Publications by authors named "Saverio Francesco Retta"

Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis.

View Article and Find Full Text PDF

Background: Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms.

Case Report: A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA.

View Article and Find Full Text PDF

KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses.

View Article and Find Full Text PDF

KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers.

View Article and Find Full Text PDF

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation.

View Article and Find Full Text PDF

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity.

View Article and Find Full Text PDF

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood.

View Article and Find Full Text PDF

: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets.

View Article and Find Full Text PDF

Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM disease exhibits a range of different phenotypes, including wide interindividual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Mutations of the KRIT1 gene account for over 50% of familial cases.

View Article and Find Full Text PDF

Glyoxalase 1 (Glo1) is a glutathione (GSH)-dependent enzyme that catalyzes the isomerization of the hemithioacetal formed non-enzymatically from methylglyoxal (MG) and GSH to S-D-lactoylglutathione (SLG). The activity of Glo1 is measured spectrophotometrically by following the increase of absorbance at 240 nm and 25 °C, attributable to the formation of SLG. The hemithioacetal is preformed by incubation of 2 mM MG and 1 mM GSH in 0.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCM) is a familial or sporadic rare disorder that is characterized by capillary vascular lesions with a mulberry-like appearance on MRI scans. Three distinct genes have been associated to CCM disease, known as CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. Loss-of-functions mutations on these genes lead to deregulation in multiple signaling pathways, thereby resulting in disturbed vessel organization and function.

View Article and Find Full Text PDF

Cerebral cavernous malformation (CCM) proteins play critical roles for endothelial cell functions, including cytoskeletal remodeling, cell-cell interactions, cell polarity, tube formation, and angiogenesis. It has been shown that the mutation of even one of the CCM genes involved in CCMs can determine an alteration in the angiogenesis process, but the precise mechanism is yet to be clarified.Here using a model of cerebral microvascular endothelial cells (hBMEC) transiently silenced by CCM1, we tried to mimic the physiological conditions that occur in the presence of CCM1 gene know-down evaluating their ability to form tube structures through an in vitro angiogenesis assay.

View Article and Find Full Text PDF

The development of distinct cellular and animal models has allowed the identification and characterization of molecular mechanisms underlying the pathogenesis of cerebral cavernous malformation (CCM) disease. This is a major cerebrovascular disorder of proven genetic origin, affecting 0.5% of the population.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) is a disorder of endothelial cells predominantly localized in the brain. Although a complete inactivation of each CCM protein has been found in the affected endothelium of diseased patients and a necessary and additional role of microenvironment has been demonstrated to determine in vivo the occurrence of vascular lesions, a microvascular endothelial model based on knockdown of a CCM gene represents today a convenient method to study some of critical signaling events regulating pathogenesis of CCM. For these reasons, in our laboratory we developed a microvascular cerebral endothelial model of Krit1 deficiency performing silencing experiments of CCM1 gene (Krit1) with siRNA procedure.

View Article and Find Full Text PDF

The application of next generation sequencing (NGS) technique has a great impact on complex disease studies. Indeed, genetic heterogeneity, phenotypic variability, and disease rarity are all factors that make the traditional diagnostic approach to genetic disorders, whereby a specific gene is selected for sequencing based on the clinical phenotype, very challenging and obsolete.Exome sequencing, which sequences the protein-coding region of the genome, has been rapidly applied to variant discovery in research settings.

View Article and Find Full Text PDF

Cerebral cavernous malformation (CCM) is a rare cerebrovascular disorder of genetic origin consisting of closely clustered, abnormally dilated and leaky capillaries (CCM lesions), which occur predominantly in the central nervous system. CCM lesions can be single or multiple and may result in severe clinical symptoms, including focal neurological deficits, seizures, and intracerebral hemorrhage. Early human genetic studies demonstrated that CCM disease is linked to three chromosomal loci and can be inherited as autosomal dominant condition with incomplete penetrance and highly variable expressivity, eventually leading to the identification of three disease genes, CCM1/KRIT1, CCM2, and CCM3/PDCD10, which encode for structurally unrelated intracellular proteins that lack catalytic domains.

View Article and Find Full Text PDF

Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations.

View Article and Find Full Text PDF

Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage.

View Article and Find Full Text PDF

A method for the aqueous synthesis of stable and biocompatible citrate-coated palladium nanoparticles (PdNPs) in the size range comparable to natural enzymes (4-8 nm) has been developed. The toxicological profile of PdNPs was assessed by different assays on several cell lines demonstrating their safety in vitro also at high particle concentrations. To elucidate their cellular fate upon uptake, the localization of PdNPs was analyzed by Transmission Electron Microscopy (TEM).

View Article and Find Full Text PDF
Article Synopsis
  • Cerebral cavernous malformation (CCM) is a genetic cerebrovascular disorder affecting the central nervous system, with a prevalence of 0.3-0.5% in the general population, caused by mutations in three specific genes.
  • Mutations in these genes alone are not enough to cause the disease; additional factors like oxidative stress and inflammation play a significant role in its development.
  • The study reveals that loss of the KRIT1 gene in fibroblasts leads to increased production of inflammatory and angiogenic factors, which influence the behavior of nearby endothelial cells, highlighting a new way KRIT1 mutations contribute to CCM.
View Article and Find Full Text PDF
Article Synopsis
  • *Silencing KRIT1 in various human endothelial cells increased pro-inflammatory adhesion molecules and apoptosis, indicating a connection to endothelial dysfunction.
  • *Mice with heterozygous KRIT1 mutations showed increased expression of inflammatory markers and greater fat accumulation in atherosclerosis-prone areas when subjected to a high-fructose diet, highlighting KRIT1's role in vascular disease.
View Article and Find Full Text PDF

Loss-of-function mutations in the KRIT1 gene are associated with the pathogenesis of cerebral cavernous malformations (CCMs), a major cerebrovascular disease still awaiting therapies. Accumulating evidence demonstrates that KRIT1 plays an important role in major redox-sensitive mechanisms, including transcriptional pathways and autophagy, which play major roles in cellular homeostasis and defense against oxidative stress, raising the possibility that KRIT1 loss has pleiotropic effects on multiple redox-sensitive systems. Using previously established cellular models, we found that KRIT1 loss-of-function affects the glutathione (GSH) redox system, causing a significant decrease in total GSH levels and increase in oxidized glutathione disulfide (GSSG), with a consequent deficit in the GSH/GSSG redox ratio and GSH-mediated antioxidant capacity.

View Article and Find Full Text PDF

Platinum nanoparticles (PtNPs) are antioxidant enzyme-mimetic nanomaterials with significant potential for the treatment of complex diseases related to oxidative stress. Among such diseases, Cerebral Cavernous Malformation (CCM) is a major cerebrovascular disorder of genetic origin, which affects at least 0.5% of the general population.

View Article and Find Full Text PDF

Oat () is a cereal known since antiquity as a useful grain with abundant nutritional and health benefits. It contains distinct molecular components with high antioxidant activity, such as tocopherols, tocotrienols, and flavanoids. In addition, it is a unique source of avenanthramides, phenolic amides containing anthranilic acid and hydroxycinnamic acid moieties, and endowed with major beneficial health properties because of their antioxidant, anti-inflammatory, and antiproliferative effects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjq47vjl98r4h5as28c0fiug4cqm9pbhv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once