The development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for MM patients with 1q+ stands to benefit a large portion of patients in need of more effective management.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is a clinically and molecularly heterogeneous disease. The increasing recognition and targeting of genetically defined DLBCLs highlights the need for robust classification algorithms. We previously characterized recurrent genetic alterations in DLBCL and identified five discrete subtypes, Clusters 1-5 (C1-C5), with unique mechanisms of transformation, immune evasion, candidate treatment targets and different outcomes following standard first-line therapy.
View Article and Find Full Text PDFModulating protein interaction pathways may lead to the cure of many diseases. Known protein-protein inhibitors bind to large pockets on the protein-protein interface. Such large pockets are detected also in the protein-protein complexes without known inhibitors, making such complexes potentially druggable.
View Article and Find Full Text PDFAlternative splicing allows a single gene to generate multiple mRNA transcripts, which can be translated into functionally diverse proteins. However, experimentally determined structures of protein splice isoforms are rare, and homology modeling methods are poor at predicting atomic-level structural differences because of high sequence identity. Here we exploit the state-of-the-art structure prediction method I-TASSER to analyze the structural and functional consequences of alternative splicing of proteins differentially expressed in a breast cancer model.
View Article and Find Full Text PDF