Diabetic neuropathy (DN) represents the main cause of morbidity and mortality among diabetic patients. Clinical data support the conclusion that the severity of DN is related to the frequency and duration of hyperglycemic periods. The presented experimental and clinical evidences propose that changes in cellular function resulting in oxidative stress act as a leading factor in the development and progression of DN.
View Article and Find Full Text PDFPatients suffering from the severe complications associated with both insulin- (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM): nephropathy, retinopathy, neuropathy, and atherosclerosis are still largely left without a prospect of an efficient treatment. Chronic hyperglycaemia, the primary clinical manifestation of diabetes, is associated with development of certain of the diabetic complications. The accelerated formation of advanced glycation end-products (AGEs) due to elevated glycemia has repeatedly been reported as a central pathogenic factor in the development of diabetic microvascular complications.
View Article and Find Full Text PDFAdvanced glycation Maillard reaction end products (AGEs) are causing the complications of diabetes and skin aging, primarily via adventitious and cross-linking of proteins. Long-lived proteins such as structural collagen are particularly implicated as pathogenic targets of AGE processes. The formation of α-dicarbonyl compounds represents an important step for cross-linking proteins in the glycation or Maillard reaction.
View Article and Find Full Text PDFGlobally, tobacco use is associated with 5 million deaths per annum and is regarded as one of the leading causes of premature death. Major chronic disorders associated with smoking include cardiovascular diseases, several types of cancer, and chronic obstructive pulmonary disease (lung problems). Cigarette smoking (CS) generates a cumulative oxidative stress, which may contribute to the pathogenesis of chronic diseases.
View Article and Find Full Text PDFAn original representative of the patented by author family of histamine-containing peptidomimetics L-glutamyl-histamine (L-Glu-Hist) was synthesized and characterized as a biologically active compound with a role of cytokine mimic leading to cellular responses of improved specificity. The study assesses the ability of L-Glu-Hist to affect molecular modeling, modulate free radical activity and influence immune cell signaling. The energy-minimized 3D conformations of L-Glu-Hist derived from its chemical structure resulted in stabilization for Fe2+ chelating complexes.
View Article and Find Full Text PDFAn original representative of histamine-containing peptidomimetics L-glutamyl-histamine (L-Glu-Hist) was synthesized and characterized as a cytokine mimic leading to cellular responses of improved specificity. The energy-minimized 3-D conformations of L-Glu-Hist derived from its chemical structure resulted in stabilization for Fe(2+) chelating complexes. L-Glu-Hist accelerated the decrease of ferrous iron in the ferrous sulphate solution in a concentration-dependent mode and showed the ferroxidase-like activity at concentrations less than 3 mm in the phenanthroline assay, whereas in the concentration range 3-20 mm L-Glu-Hist restricted the availability of Fe(2+) to phenanthroline due to binding of ferrous ions in chelating complexes.
View Article and Find Full Text PDFA novel histamine-containing peptidomimetic, L-glutamyl-histamine (L-Glu-Hist), has been synthesized and characterized as a possible cytokine mimic which might lead to cellular responses of improved specificity. The energy-minimized 3-D conformations of L-Glu-Hist derived from its chemical structure stabilize Fe2+-chelating complexes. L-Glu-Hist concentration-dependently accelerates a decrease in ferrous iron in ferrous sulfate solution and shows ferroxidase-like activity at concentrations less than 3 mM in the phenanthroline assay, whereas in the concentration range 3-20 mM it restricts the availability of Fe2+ to phenanthroline by chelation of iron ions.
View Article and Find Full Text PDF