Publications by authors named "Savas Konur"

Summary: Motivated by the need to parameterize ongoing multicellular simulation research, this paper documents the culmination of a ChatGPT augmented software engineering cycle resulting in an integrated visual platform for efficient cytohistological RNA-seq and bioregulatory network exploration. As contrasted to other systems and synthetic biology tools, BioNexusSentinel was developed to uniquely combine these features. Reactome served as the primary source of remotely accessible biological models, accessible using BioNexusSentinel's novel search engine and REST API requests.

View Article and Find Full Text PDF

The formalization of biological systems using computational modelling approaches as an alternative to mathematical-based methods has recently received much interest because computational models provide a deeper mechanistic understanding of biological systems. In particular, formal verification, complementary approach to standard computational techniques such as simulation, is used to validate the system correctness and obtain critical information about system behaviour. In this study, we survey the most frequently used computational modelling approaches and formal verification techniques for computational biology.

View Article and Find Full Text PDF

The elevation of Synthetic Biology from single cells to multicellular simulations would be a significant scale-up. The spatiotemporal behavior of cellular populations has the potential to be prototyped in silico for computer assisted design through ergonomic interfaces. Such a platform would have great practical potential across medicine, industry, research, education and accessible archiving in bioinformatics.

View Article and Find Full Text PDF

We present the Infobiotics Workbench (IBW), a user-friendly, scalable, and integrated computational environment for the computer-aided design of synthetic biological systems. It supports an iterative workflow that begins with specification of the desired synthetic system, followed by simulation and verification of the system in high-performance environments and ending with the eventual compilation of the system specification into suitable genetic constructs. IBW integrates , , , and features into a single software suite.

View Article and Find Full Text PDF

miRNAs (microRNAs) play a key role in triple-negative breast cancer (TNBC) progression, and its heterogeneity at the expression, pathological and clinical levels. Stratification of breast cancer subtypes on the basis of genomics and transcriptomics profiling, along with the known biomarkers' receptor status, has revealed the existence of subgroups known to have diverse clinical outcomes. Recently, several studies have analysed expression profiles of matched mRNA and miRNA to investigate the underlying heterogeneity of TNBC and the potential role of miRNA as a biomarker within cancers.

View Article and Find Full Text PDF

Motivation: Formal verification is a computational approach that checks system correctness (in relation to a desired functionality). It has been widely used in engineering applications to verify that systems work correctly. Model checking, an algorithmic approach to verification, looks at whether a system model satisfies its requirements specification.

View Article and Find Full Text PDF

This paper proposes a formal methodology to analyse bio-systems, in particular synthetic biology systems. An integrative analysis perspective combining different model checking approaches based on different property categories is provided. The methodology is applied to the synthetic pulse generator system and several verification experiments are carried out to demonstrate the use of our approach to formally analyse various aspects of synthetic biology systems.

View Article and Find Full Text PDF

Computational models are perceived as an attractive alternative to mathematical models (e.g., ordinary differential equations).

View Article and Find Full Text PDF