Design, sensing, and control of underwater gripping systems remain challenges for soft robotic manipulators. Our study investigates these critical issues by designing a shape memory alloy (SMA) actuation system for a soft robotic finger with a directly 3D-printed stretchable skin-like tactile sensor. SMA actuators were thermomechanically trained to assume a curved finger-like shape when Joule heated, and the flexible multi-layered tactile sensor was directly 3D-printed onto the surface of the fingertip.
View Article and Find Full Text PDFThis paper presents the design, control and evaluation of a novel robotic finger actuated by shape memory alloy (SMA) tubes which intrinsically afford an internal conduit for fluidic cooling. The SMA tubes are thennomechanically programmed to flex the robotic finger when Joule heated. A superelastic SMA plate provides a spring return motion to extend the finger when cooling liquid is pumped through the internal channel of the SMA tube actuators.
View Article and Find Full Text PDFMost robotic applications that contain shape memory alloy (SMA) actuators use the SMA in a linear or spring shape. In contrast, a novel robotic finger was designed in this paper using SMA plates that were thermomechanically trained to take the shape of a flexed human finger when Joule heated. This flexor actuator was placed in parallel with an extensor actuator that was designed to straighten when Joule heated.
View Article and Find Full Text PDF