Publications by authors named "Savaraj N"

Aberrant and dysregulated protein-protein interactions (PPIs) drive a significant number of human diseases, which is why they represent a major class of targets in drug discovery. Although a number of high-affinity antibody-based drugs have emerged in this therapeutic space, the discovery of smaller PPI inhibitors is lagging far behind, underscoring the need for novel scaffold modalities. To bridge this gap, we introduce a biomimetic platform technology - adaptive design of antibody paratopes into therapeutics () - that enables the paratope-forming binding loops of antibodies to be crafted into large β-hairpin scaffolds ().

View Article and Find Full Text PDF

Background: The impact of non-small cell lung cancer (NSCLC) metabolism on the immune microenvironment is not well understood within platinum resistance. We have identified crucial metabolic differences between cisplatin-resistant (CR) and cisplatin-sensitive (CS) NSCLC cells with elevated indoleamine 2,3-dioxygenase-1 (IDO1) activity in CR, recognized by increased kynurenine (KYN) production.

Methods: Co-culture, syngeneic, and humanize mice models were utilized.

View Article and Find Full Text PDF

Checkpoint blockade of the immunoreceptor programmed cell death-1 (PD1) with its ligand-1 (PDL1) by monoclonal antibodies such as pembrolizumab provided compelling clinical results in various cancer types, yet the molecular mechanism by which this drug blocks the PD1/PDL1 interface remains unclear. To address this question, we examined the conformational motion of PD1 associated with the binding of pembrolizumab. Our results revealed that the innate plasticity of both C'D and FG loops is crucial to form a deep binding groove (371 Å ) across several distant epitopes of PD1.

View Article and Find Full Text PDF

Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor activities without harming normal cells.

View Article and Find Full Text PDF

The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients.

View Article and Find Full Text PDF

Proline, glutamine, asparagine, and arginine are conditionally non-essential amino acids that can be produced in our body. However, they are essential for the growth of highly proliferative cells such as cancers. Many cancers express reduced levels of these amino acids and thus require import from the environment.

View Article and Find Full Text PDF

Many human malignancies require extracellular arginine (Arg) for survival because the key enzyme for de novo Arg biosynthesis, argininosuccinate synthetase 1 (ASS1), is silenced. Recombinant arginine deiminase (ADI-PEG20), which digests extracellular Arg, has been in clinical trials for treating ASS1-negative tumors. Reactivation of ASS1 is responsible for the treatment failure.

View Article and Find Full Text PDF

Cisplatin resistance is a major barrier in the effective treatment of lung cancer. Cisplatin-resistant (CR) lung cancer cells do not primarily use glucose but rather consume amino acids such as glutamine and tryptophan (Trp) for survival. CR cells activate the kynurenine (KYN) pathway (KP) to cope with excessive reactive oxygen species (ROS) and maintain homeostasis for growth and proliferation.

View Article and Find Full Text PDF

Background: Checkpoint inhibitors have shown modest activity in patients with advanced hepatocellular carcinoma (HCC). Herein, the authors report a prospective single-institution clinical/translational phase 2 study of pembrolizumab in patients with advanced HCC and circulating biomarkers closely related to response.

Methods: Pembrolizumab was administered at a dose of 200 mg intravenously every 3 weeks among patients who may have developed disease progression while receiving, were intolerant of, or refused sorafenib.

View Article and Find Full Text PDF

Rationale: While checkpoint inhibitors have revolutionized the treatment of melanoma, it is not known whether switching from one monoclonal antibody drug to another one would be justified in the case of a treatment failure. Herein, we report a case illustrating a durable response to pembrolizumab after a failure with nivolumab.

Patient Concerns: A 76-year-old white male noticed an enlarging papular lesion on his neck.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a severe cancer with poor prognosis. The aim of the present study was to explore the expression of argininosuccinate synthetase (ASS), as well as the possibility of using pegylated arginine deiminase (ADI-PEG20) for the treatment of CCA. ASS expression was determined in CCA specimens from 40 patients in Thailand.

View Article and Find Full Text PDF

Background: A phase II trial of pasireotide was performed to assess its efficacy and safety in advanced or metastatic hepatocellular carcinoma (HCC).

Patients And Methods: Patients with advanced HCC and Child-Pugh score ≤7 received pasireotide LAR 60 mg intramuscularly every 28 days. Primary endpoint was disease control rate.

View Article and Find Full Text PDF

Bielschowskysin (1), the flagship of the furanocembranoid diterpene family, has attracted attention from chemists owing to its intriguing and daunting polycyclic architecture and medicinal potential against lung cancer. The high level of functionalization of 1 poses a considerable challenge to synthesis. Herein, a stereoselective furan dearomatization strategy of furanocembranoids was achieved via the intermediacy of chlorohydrins.

View Article and Find Full Text PDF

Melanomas harboring BRAF mutation (V600E) are known to recur frequently following treatment with BRAF inhibitors (BRAFi) despite a high initial response rate. Our previous study has uncovered that BRAFi-resistant melanoma (BR) cells are vulnerable to arginine deprivation. It has been reported that naïve melanoma cells undergo autophagy and re-express argininosuccinate synthetase 1 (ASS1) to enable them to synthesize arginine for survival when encountering arginine deprivation.

View Article and Find Full Text PDF

Argininosuccinate synthetase 1 (ASS1) is the key enzyme that controls biosynthesis of arginine (Arg). ASS1 is silenced in many human malignancies therefore, these tumors require extracellular Arg for growth. The Arg-degrading recombinant protein, pegylated arginine deiminase (ADI-PEG20), has been in clinical trials for targeting Arg auxotrophic tumors by Arg starvation therapy.

View Article and Find Full Text PDF

Despite numerous reports on immune checkpoint inhibitor for the treatment of non-small cell lung cancer (NSCLC), the response rate remains low but durable. Thus cisplatin still plays a major role in the treatment of NSCLC. While there are many mechanisms involved in cisplatin resistance, alteration in metabolic phenotypes with elevated levels of reactive oxygen species (ROS) are found in several cisplatin resistant tumors.

View Article and Find Full Text PDF

Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial.

View Article and Find Full Text PDF

Argininosuccinate synthetase (ASS), a key enzyme to synthesize arginine is down regulated in many tumors including hepatocellular carcinoma (HCC). Similar to previous reports, we have found the decrease in ASS expression in poorly differentiated HCC. These ASS(-) tumors are auxotrophic for arginine.

View Article and Find Full Text PDF

Cisplatin resistance remains a major problem in the treatment of lung cancer. We have discovered that cisplatin resistant (CR) lung cancer cells, regardless of the signaling pathway status, share the common parameter which is an increase in reactive oxygen species (ROS) and undergo metabolic reprogramming. CR cells were no longer addicted to the glycolytic pathway, but rather relied on oxidative metabolism.

View Article and Find Full Text PDF

Argininosuccinate synthetase 1 (ASS1) is the rate-limiting enzyme that catalyzes the biosynthesis of arginine (Arg). Many malignant human tumors are auxotrophic for Arg because ASS1 is silenced. ASS1 has been established as a sensor of Arg auxotrophic response and a chemosensitivity marker for Arg starvation therapy.

View Article and Find Full Text PDF

Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression.

View Article and Find Full Text PDF

Background/aim: Sorafenib and chemoembolization of the liver (TACE) have both produced increased survival in hepatocellular carcinoma (HCC). Some patients cannot tolerate TACE due to portal vein thrombosis or risk of liver failure. In this pilot trial, we aimed to combine intrahepatic infusion (IA) of cisplatin or carboplatin with sorafenib for unresectable HCC.

View Article and Find Full Text PDF

Lung cancer continues to be one of the leading causes of death worldwide. In advanced cases of lung cancer, a multimodality approach is often applied, however with poor local control rates. In early non-small cell lung cancer (NSCLC), surgery is the standard of care.

View Article and Find Full Text PDF

BRAF inhibitor (BRAFi) has been used for treatment of melanomas harboring V600E mutation. Despite a high initial response rate, resistance to BRAFi is inevitable. Here, we demonstrate that BRAFi-resistant (BR) melanomas are susceptible to arginine deprivation due to inability to initiate re-expression of argininosuccinate synthetase (ASS1, a key enzyme for arginine synthesis) as well as ineffective autophagy.

View Article and Find Full Text PDF