Histone demethylases are overexpressed or display altered activity in numerous human cancers leading to alterations in cell cycle dynamics, DNA repair kinetics, and therapeutic resistance. Consequently, therapeutic targeting of histone demethylases has become an active and promising area of research in human oncology. However, the role of histone demethylases and the potential efficacy of demethylase inhibition in canine cancers remains largely unknown.
View Article and Find Full Text PDFVerdinexor (KPT-335) is a novel orally bioavailable selective inhibitor of nuclear export (SINE) compound that inhibits the function of the nuclear export protein Exportin 1 (XPO1/CRM1). In the present study, we sought to characterize the expression of XPO1 in primary canine osteosarcoma (OS) tumour samples, OS cell lines and normal osteoblasts and evaluate the in vitro activity of verdinexor alone or in combination with doxorubicin. Canine OS cell lines and a subset of primary OS tumours showed increased XPO1 transcript and protein expression as compared with normal canine osteoblast cells.
View Article and Find Full Text PDFMicroscopy allows researchers to interrogate proteins within a cellular context. To deliver protein-specific contrast, we developed a new class of genetically encoded peptide tags called versatile interacting peptide (VIP) tags. VIP tags deliver a reporter to a target protein via the formation of a heterodimer between the peptide tag and an exogenously added probe peptide.
View Article and Find Full Text PDFIntratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined.
View Article and Find Full Text PDFVersatile Interacting Peptide (VIP) tags are a new class of genetically-encoded tag designed for imaging cellular proteins by fluorescence and electron microscopy. In 2018, we reported the VIPER tag ( Doh , 2018 ), which contains two elements: a genetically-encoded peptide tag (, CoilE) and a probe peptide (, CoilR). These two peptides deliver contrast to a protein of interest by forming a specific, high-affinity heterodimer.
View Article and Find Full Text PDF