Rationale: Common surface-assisted laser desorption/ionization (SALDI) surfaces are functionalized to improve mass spectrometric detection. Such surfaces are selective to certain group(s) of compounds. The application of universal and sensitive SALDI surfaces with appropriate size/surface area is paramount.
View Article and Find Full Text PDFThis study aimed at exploring whether 3D technology enhances tennis decision-making under the conceptual framework of human performance model. A 3 (skill-level: varsity, club, recreational) × 3 (experimental condition: placebo, weak 3D [W3D], strong 3D [S3D]) between-participant design was used. Allocated to experimental conditions by a skill-level stratified randomization, 105 tennis players judged tennis serve direction from video scenarios and rated their perceptions of enjoyment, flow, and presence during task performance.
View Article and Find Full Text PDFWe report the first use of NiO, FeO, TiO, and CoO nanoparticles as surfaces for surface-assisted laser desorption/ionization (SALDI) mass spectrometry of asphaltenes. Higher ratios (S/Ns) for asphaltene species were observed using NiO and FeO nanoparticles for SALDI as compared to LDI, where both surfaces consistently provided 2- to 3-fold improved S/Ns. The new SALDI detection method showed reliable adsorption data measuring supernatant solutions after 24 hour asphaltene adsorption on NiO, FeO, and CoO.
View Article and Find Full Text PDF