This study investigates the potential of combining Cerium-doped bioactive glass (BBGi) with Polyvinylpyrrolidone (PVP) to enhance the properties of titanium (Ti) implant surfaces using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The primary focus is on improving osseointegration, corrosion resistance, and evaluating the cytotoxicity of the developed thin films towards host cells. The innovative approach involves synthesizing a composite thin film comprising BBGi and PVP, leveraging the distinct benefits of both materials: BBGi's biocompatibility and osteoinductive capabilities, and PVP's film-forming and biocompatible properties.
View Article and Find Full Text PDFBioactive glass is currently considered a material with a high biocompatibility and has been used both in the field of bone regeneration and in the preparation of cosmetic products with the controlled release of active compounds. The present work involved a study on the synthesis of bioglass using the sol-gel process. The study aims to evaluate the influence of the treatment of bioglass with Polyethylene glycol 4000 (PEG 4000) on its main characteristics.
View Article and Find Full Text PDFEngineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface.
View Article and Find Full Text PDFHigh-quality convex colloidal photonic crystals can be grown on the tip of an optical fiber by self-assembly using the hanging drop method. They are convex-shaped, produce the diffraction of reflecting light with high efficiency (blazing colors), and have a high curvature. The convex colloidal crystals are easily detachable and, as free-standing objects, they are mechanically robust, allowing their manipulation and use as convex reflective diffraction devices in imaging spectrometers.
View Article and Find Full Text PDFIn this study, a sol-gel film based on lead sulfide (PbS) quantum dots incorporated into a host network was synthesized as a special nanostructured composite material with potential applications in temperature sensor systems. This work dealt with the optical, structural, and morphological properties of a representative PbS quantum dot (QD)-containing thin film belonging to the AlO-SiO-PO system. The film was prepared using the sol-gel method combined with the spin coating technique, starting from a precursor solution containing a suspension of PbS QDs in toluene with a narrow size distribution and coated on a glass substrate in a multilayer process, followed by annealing of each deposited layer.
View Article and Find Full Text PDFA convenient and low-cost sol-gel approach for the one-step synthesis of ZnO-PO-rGO nanostructures with tuned bandgap and fluorescence was investigated. The obtained hybrid nanostructures exploit the properties of zinc oxide, graphene oxide and phosphorous oxide as promising candidates for a wide range of optoelectronic applications. A predominant amorphous structure, ZnO-PO-rGO, containing ZnO nanorods was evidenced by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM).
View Article and Find Full Text PDFVanadate glasses exhibit semiconducting property at certain temperatures. This work demonstrates the conductivity of the composition 45VO-25BO-30PO, which is a new glass in the vanadium-boron-phosphorus ternary system that expands the glass forming area reported in literature data. The glass was obtained through a classical melt-quenching technique.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2022
This research work focuses on the fabrication and study of a series of nanocomposites consisting of two types of hydroxyapatite (HA), obtained by precipitate (HAP) and sol-gel (HAG) methods, and a boro-silico-phosphate bioglass. The microstructure and chemical, mechanical, and biological properties as functions of three factors, namely (i) the type of hydroxyapatite, (ii) glass content, and (iii) sintering temperature, were investigated. It was found that all of these factors affect the final composition and microstructure, especially, porosity, which shows significantly lower values for HAP-based composites than for HAG-based ones and higher values for higher glass content.
View Article and Find Full Text PDFA novel analytical formalism is proposed based upon Quantum heat transport equation in order to describe the femtoseconds/picoseconds laser pulses interaction with the Deoxyribonucleic acid (DNA). The formalism generates solutions based upon inputs as: voltage, laser beam intensity and laser - DNA interaction time. Thermal waves induced inside irradiated DNA are defined and accounted for.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2022
IV-VI semiconductor quantum dots embedded into an inorganic matrix represent nanostructured composite materials with potential application in temperature sensor systems. This study explores the optical, structural, and morphological properties of a novel PbS quantum dots (QDs)-doped inorganic thin film belonging to the AlO-SiO-PO system. The film was synthesized by the sol-gel method, spin coating technique, starting from a precursor solution deposited on a glass substrate in a multilayer process, followed by drying of each deposited layer.
View Article and Find Full Text PDFSilica and polystyrene spheres with a small size ratio (r = 0.005) form by sequential hanging drop self-assembly, a binary colloidal crystal through which calcination transforms in a silica-ordered concavity array. These arrays are capable of light Bragg diffraction and shape dependent optical phenomena, and they can be transformed into inverse-opal structures.
View Article and Find Full Text PDFPhosphate and tellurite glasses can be used in optics, optoelectronics, magneto-optics, and nuclear and medical fields. Two series of phosphate-tellurite glasses, (50-)ZnO-10AlO-40PO-TeO and (40-)LiO-10AlO-5TiO-45PO-TeO ( = 5, 10), were synthesized by a non-conventional wet-route, and the mechanical properties as key performance measures for their application in optoelectronics were investigated. X-ray Diffraction (XRD) measurements revealed the vitreous nature of the investigated materials.
View Article and Find Full Text PDFA polyester fabric with rectangular openings was used as a sacrificial template for the guiding of a sub-micron sphere (polystyrene (PS) and silica) aqueous colloid self-assembly process during evaporation as a patterned colloidal crystal (PCC). This simple process is also a robust one, being less sensitive to external parameters (ambient pressure, temperature, humidity, vibrations). The most interesting feature of the concave-shape-pattern unit cell (350 μm × 400 μm × 3 μm) of this crystal is the presence of triangular prisms at its border, each prism having a one-dimensional sphere array at its top edge.
View Article and Find Full Text PDFMeteorites contain organic matter that may have contributed to the origin of life on Earth. Carbonyl compounds such as aldehydes and carboxylic acids, which occur in meteorites, may be precursors of biologically necessary organic materials in the solar system. Therefore, such organic matter is of astrobiological importance and their detection and characterization can contribute to the understanding of the early solar system as well as the origin of life.
View Article and Find Full Text PDFThis work investigates the structural, magnetic and magneto-optical properties of a new zinc phosphate-tellurite glass belonging to the 45ZnO-10AlO-40PO-5TeO system. The glass was prepared by a wet method of processing the starting reagents followed by suitable melting-stirring-quenching-annealing steps. Specific parameters such as density, average molecular mass, molar volume, oxygen packaging density, refractive index, molar refractivity, electronic polarizability, reflection loss, optical transmission, band gap and optical basicity have been reported together with thermal, magnetic and magneto-optical characteristics.
View Article and Find Full Text PDFA Multiple-Temperature Model is proposed to describe the flash laser irradiation of a single layer of graphene. Zhukovsky's mathematical approach is applied to solve the Fourier heat equations based upon quantum concepts, including heat operators. Easy solutions were inferred with respect to classical mathematics.
View Article and Find Full Text PDFMirogabalin, which is a novel ligand for the α₂δ subunit of voltage-gated calcium channels, is being developed for treating neuropathic pain including diabetic peripheral neuropathy and postherpetic neuralgia. Mirogabalin possesses unique α₂δ subunit binding characteristics and has potent and long-lasting analgesic effects in neuropathic pain models. In the present study, we investigated the effects of mirogabalin on N-type calcium channel currents of the rat dorsal root ganglion (DRG) culture neurons using the whole-cell patch clamp technique.
View Article and Find Full Text PDFA rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions.
View Article and Find Full Text PDFFront Cell Neurosci
February 2014
Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2-4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.
View Article and Find Full Text PDFThe different origins of Cajal-Retzius cells (CRc) as well as their diverse molecular profile suggest that this cell type may represent different neuronal subpopulations. In order to investigate whether CRc from different origins show distinct functional or morphological characteristics we used transgenic Dbx1(cre);ROSA26(YFP) mice in which two subpopulations of CRc, originating from the septum and ventral pallium (VP) at the pallial-subpallial border (PSB), were permanently labeled by yellow fluorescent protein (YFP) expression. Electrophysiological properties of YFP(+) and YFP(-) CRc were investigated by whole-cell patch-clamp recordings, while a thorough somatodendritic and axonal reconstruction of the biocytin labeled CRc was subsequently performed using a Neurolucida system.
View Article and Find Full Text PDFThe development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings.
View Article and Find Full Text PDF