T cells, key players in the immune system, recognize antigens via T-cell receptors (TCRs) and require additional costimulatory and cytokine signals for full activation. Beyond biochemical signals, T cells also respond to mechanical cues such as tissue stiffness. Traditional ex-vivo mechanostimulating platforms, however, present a uniform mechanical environment, unlike the heterogeneous conditions T cells encounter in-vivo.
View Article and Find Full Text PDFSocial media has affected how we relate to our body image. Digital makeovers have both reinforced existing beauty ideals and created new ones. This project investigated whether young adults' recognition of image filters was associated by the beliefs of beauty ideals and gender.
View Article and Find Full Text PDFThe quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them.
View Article and Find Full Text PDFWe investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response.
View Article and Find Full Text PDFWe introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 μm.
View Article and Find Full Text PDFT cells respond not only to biochemical stimuli transmitted through their activating, costimulatory, and inhibitory receptors but also to biophysical aspects of their environment, including the receptors' spatial arrangement. While these receptors form nanoclusters that can either colocalize or segregate, the roles of these colocalization and segregation remain unclear. Deciphering these roles requires a nanoscale platform with independent and simultaneous spatial control of multiple types of receptors.
View Article and Find Full Text PDFThe ex vivo activation and proliferation of cytotoxic T cells are critical steps in adoptive immunotherapy. Today, T cells are activated by stimulation with antibody-coated magnetic beads, traditionally used for cell separation. Yet, efficient and controlled activation and proliferation of T cells require new antibody-bearing materials, which, in particular, deliver mechanical and topographic cues sensed by T cells.
View Article and Find Full Text PDFMolecular scale nanopatterns of bioactive molecules have been used to study the effect of transmembrane receptor arrangement on a variety of cell types, including immune cells and their immune response in particular. However, state-of-the-art fabrication approaches have thus far enabled the production of patterns with control over one receptor type only. Herein, we describe a protocol to fabricate arrays for the molecular scale control of the segregation between activating and inhibitory receptors in NK cells.
View Article and Find Full Text PDFThe binding of peptides and proteins through multiple weak interactions is ubiquitous in nature. Biopanning has been used to "hijack" this multivalent binding for the functionalization of surfaces. For practical applications it is important to understand how multivalency influences the binding interactions and the resulting behaviour of the surface.
View Article and Find Full Text PDFThe current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces.
View Article and Find Full Text PDFSurface layer proteins perform multiple functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. However, mimicking the complex and dynamic behavior of such two-dimensional biochemical systems is challenging, and hence research has so far focused mainly on the design and manipulation of the structure and functionality of protein assemblies in solution. Motivated by the new opportunities that dynamic surface layer proteins may offer for modern technology, we herein demonstrate that immobilization of coiled coil proteins onto an inorganic surface facilitates complex behavior, manifested by reversible chemical reactions that can be rapidly monitored as digital surface readouts.
View Article and Find Full Text PDFThe templated assembly of nanoparticles has been limited so far to yield only discontinuous nanoparticle clusters confined within lithographically patterned cavities. Here, we explored the templated assembly of nanoparticles into continuous 2D structures, using lithographically patterned templates with topographical features sized as the assembled nanoparticles. We found that these features act as nucleation centers, whose exact arrangement determines four possible assembly regimes (i) rotated, (ii) disordered, (iii) closely packed, and (iv) unpacked.
View Article and Find Full Text PDFThe role of juxtaposition of activating and inhibitory receptors in signal inhibition of cytotoxic lymphocytes remains strongly debated. The challenge lies in the lack of tools that allow simultaneous spatial manipulation of signaling molecules. To circumvent this, we produced a nanoengineered multifunctional platform with molecular-scale spatial control of ligands, which was applied to elucidate KIR2DL1-mediated inhibition of NKG2D signaling-receptors of natural killer cells.
View Article and Find Full Text PDFT cells sense both chemical cues delivered by antigen molecules and physical cues delivered by the environmental elasticity and topography; yet, it is still largely unclear how these cues cumulatively regulate the immune activity of T cells. Here, we engineered a nanoscale platform for stimulation of T cells based on antigen-functionalized nanowires. The nanowire topography and elasticity, as well as the immobilized antigens, deliver the physical and chemical cues, respectively, enabling the systematic study of the integrated effect of these cues on a T cell's immune response.
View Article and Find Full Text PDFThe cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2021
The study examined how readers integrate information from and about multiple information sources into a memory representation. In two experiments, college students read brief news reports containing two critical statements, each attributed to a source character. In half of the texts, the statements were consistent with each other, in the other half they were discrepant.
View Article and Find Full Text PDFChalcogenide glasses are attractive materials for optical applications. However, these applications often require pattering of the surface with functional micro-/ nanostructures, which is challenging by traditional microfabrication. Here, we present a novel, robust, and scalable approach for the direct patterning of chalcogenide glasses, based on soft imprinting of a solvent-plasticized glass layer formed on the glass surface.
View Article and Find Full Text PDFCell morphological analysis has long been used in cell biology and physiology for abnormality identification, early cancer detection, and dynamic change analysis under specific environmental stresses. This work reports on the remote mapping of cell 3D morphology with an in-plane resolution limited by optics and an out-of-plane accuracy down to a tenth of the optical wavelength. For this, GHz coherent acoustic phonons and their resonance harmonics were tracked by means of an ultrafast opto-acoustic technique.
View Article and Find Full Text PDFInt J Mol Sci
February 2019
Natural Killer (NK) cells are innate lymphocytes that contribute to immune protection by cytosis, cytokine secretion, and regulation of adaptive responses of T cells. NK cells distinguish between healthy and ill cells, and generate a cytotoxic response, being cumulatively regulated by environmental signals delivered through their diverse receptors. Recent advances in biomaterials and device engineering paved the way to numerous artificial microenvironments for cells, which produce synthetic signals identical or similar to those provided by the physiological environment.
View Article and Find Full Text PDFCells sense their environment by transducing mechanical stimuli into biochemical signals. Commonly used tools to study cell mechanosensing provide limited spatial and force resolution. Here, a novel nanowire-based platform for monitoring cell forces is reported.
View Article and Find Full Text PDFControlled assembly of nanostructures is a key challenge in nanotechnology. In this work, we introduce an approach for the controlled assembly of 1D nanodumbbells-Au-tipped semiconductor nanorods-into arbitrary 2D higher architectures, by their chemical docking to nanopatterned functionalities. We realized the docking functionalities via nanoimprinted metallic nanodots functionalized with an organic monolayer, whose terminal thiol groups chemically bind the nanodumbbell tips.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
Studying how different signaling pathways spatially integrate in cells requires selective manipulation and control of different transmembrane ligand-receptor pairs at the same time. This work explores a novel method for precisely arranging two arbitrarily chosen ligands on a micron-scale two-dimensional pattern. The approach is based on lithographic patterning of Au and TiO films, followed by their selective functionalization with Ni-nitrilotriacetic acid-histidine and biotin-avidin chemistries, respectively.
View Article and Find Full Text PDF