The MYC oncogene is frequently amplified in triple-negative breast cancer (TNBC). Here, we show that MYC suppression induces immune-related hallmark gene set expression and tumor-infiltrating T cells in MYC-hyperactivated TNBCs. Mechanistically, MYC repressed stimulator of interferon genes (STING) expression via direct binding to the STING1 enhancer region, resulting in downregulation of the T-cell chemokines CCL5, CXCL10, and CXCL11.
View Article and Find Full Text PDFPurpose: FGFR1 overexpression has been associated with endocrine resistance in ER breast cancer. We found FGFR1 localized in the nucleus of breast cancer cells in primary tumors resistant to estrogen suppression. We investigated a role of nuclear FGFR1 on gene transcription and antiestrogen resistance.
View Article and Find Full Text PDFGene expression signature-based inference of functional connectivity within and between genetic perturbations, chemical perturbations, and disease status can lead to the development of actionable hypotheses for gene function, chemical modes of action, and disease treatment strategies. Here, we report a FuSiOn-based genome-wide integration of hypomorphic cellular phenotypes that enables functional annotation of gene network topology, assignment of mechanistic hypotheses to genes of unknown function, and detection of cooperativity among cell regulatory systems. Dovetailing genetic perturbation data with chemical perturbation phenotypes allowed simultaneous generation of mechanism of action hypotheses for thousands of uncharacterized natural products fractions (NPFs).
View Article and Find Full Text PDFThe originally published version of this Article contained an error in the spelling of the author Nathaniel W. Oswald, which was incorrectly given as Nathaniel W. Olswald.
View Article and Find Full Text PDFDiversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses.
View Article and Find Full Text PDFDrugs that mirror the cellular effects of starvation mimics are considered promising therapeutics for common metabolic disorders, such as obesity, liver steatosis, and for ageing. Starvation, or caloric restriction, is known to activate the transcription factor EB (TFEB), a master regulator of lipid metabolism and lysosomal biogenesis and function. Here, we report a nanotechnology-enabled high-throughput screen to identify small-molecule agonists of TFEB and discover three novel compounds that promote autophagolysosomal activity.
View Article and Find Full Text PDFGenomic diversity among melanoma tumors limits durable control with conventional and targeted therapies. Nevertheless, pathologic activation of the ERK1/2 pathway is a linchpin tumorigenic mechanism associated with the majority of primary and recurrent disease. Therefore, we sought to identify therapeutic targets that are selectively required for tumorigenicity in the presence of pathologic ERK1/2 signaling.
View Article and Find Full Text PDFThe common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export.
View Article and Find Full Text PDFCRISPR/Cas9 is an enabling RNA-guided technology for genome targeting and engineering. An acute DNA binding constraint of the Cas9 protein is the Protospacer Adjacent Motif (PAM). Here we demonstrate that the PAM requirement can be exploited to specifically target single-nucleotide heterozygous mutations while exerting no aberrant effects on the wild-type alleles.
View Article and Find Full Text PDFAn efficient total synthesis of the potent V-ATPase inhibitor saliphenylhalamide (SaliPhe), a synthetic variant of the natural product salicylihalamide A (SaliA), has been accomplished aimed at facilitating the development of SaliPhe as an anticancer and antiviral agent. This new approach enabled facile access to derivatives for structure-activity relationship studies, leading to simplified analogs that maintain SaliPhe's biological properties. These studies will provide a solid foundation for the continued evaluation of SaliPhe and analogs as potential anticancer and antiviral agents.
View Article and Find Full Text PDFThe RASSF1A gene is one of the most frequently inactivated genes in over 30 different types of cancers (H. Donninger, M. D.
View Article and Find Full Text PDFContext-specific molecular vulnerabilities that arise during tumor evolution represent an attractive intervention target class. However, the frequency and diversity of somatic lesions detected among lung tumors can confound efforts to identify these targets. To confront this challenge, we have applied parallel screening of chemical and genetic perturbations within a panel of molecularly annotated NSCLC lines to identify intervention opportunities tightly linked to molecular response indicators predictive of target sensitivity.
View Article and Find Full Text PDFA challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells.
View Article and Find Full Text PDFInfluenza A virus infects 5-20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance.
View Article and Find Full Text PDFMotivation: With the increasing volume of scientific papers and heterogeneous nomenclature in the biomedical literature, it is apparent that an improvement over standard pattern matching available in existing search engines is required. Cognition Search Information Retrieval (CSIR) is a natural language processing (NLP) technology that possesses a large dictionary (lexicon) and large semantic databases, such that search can be based on meaning. Encoded synonymy, ontological relationships, phrases, and seeds for word sense disambiguation offer significant improvement over pattern matching.
View Article and Find Full Text PDF