We have developed an open-source workflow that allows for quantitative single-cell analysis of organelle morphology, distribution, and inter-organelle contacts with an emphasis on the analysis of mitochondria and mitochondria-endoplasmic reticulum (mito-ER) contact sites. As the importance of inter-organelle contacts becomes more widely recognized, there is a concomitant increase in demand for tools to analyze subcellular architecture. Here, we describe a workflow we call MitER (pronounced "mightier"), which allows for automated calculation of organelle morphology, distribution, and inter-organelle contacts from 3D renderings by employing the animation software Blender.
View Article and Find Full Text PDFThe ability to perform sophisticated, high-throughput optogenetic experiments has been greatly enhanced by recent open-source illumination devices that allow independent programming of light patterns in single wells of microwell plates. However, there is currently a lack of instrumentation to monitor such experiments in real time, necessitating repeated transfers of the samples to stand-alone analytical instruments, thus limiting the types of experiments that could be performed. Here we address this gap with the development of the optoPlateReader (oPR), an open-source, solid-state, compact device that allows automated optogenetic stimulation and spectroscopy in each well of a 96-well plate.
View Article and Find Full Text PDFWe present an approach, based on learning an intrinsic data manifold, for the initialization of the internal state values of long short-term memory (LSTM) recurrent neural networks, ensuring consistency with the initial observed input data. Exploiting the generalized synchronization concept, we argue that the converged, "mature" internal states constitute a function on this learned manifold. The dimension of this manifold then dictates the length of observed input time series data required for consistent initialization.
View Article and Find Full Text PDF