Publications by authors named "Saurabh Dash"

Spatio-temporal dynamics of physical processes are generally modeled using partial differential equations (PDEs). Though the core dynamics follows some principles of physics, real-world physical processes are often driven by unknown external sources. In such cases, developing a purely analytical model becomes very difficult and data-driven modeling can be of assistance.

View Article and Find Full Text PDF

This paper introduces a heterogeneous spiking neural network (H-SNN) as a novel, feedforward SNN structure capable of learning complex spatiotemporal patterns with spike-timing-dependent plasticity (STDP) based unsupervised training. Within H-SNN, hierarchical spatial and temporal patterns are constructed with convolution connections and memory pathways containing spiking neurons with different dynamics. We demonstrate analytically the formation of long and short term memory in H-SNN and distinct response functions of memory pathways.

View Article and Find Full Text PDF