Ever since the discovery of carbon nanotubes (CNTs), it has long been a challenging goal to create macroscopically ordered assemblies, or crystals, of CNTs that preserve the one-dimensional quantum properties of individual CNTs on a macroscopic scale. Recently, a simple and well-controlled method was reported for producing wafer-scale crystalline films of highly aligned and densely packed CNTs through spontaneous global alignment that occurs during vacuum filtration (. , , 633).
View Article and Find Full Text PDFThe Billups-Birch Reduction chemistry has been shown to functionalize single-walled carbon nanotubes (SWCNTs) without damaging the sidewalls, but has challenges in scalability. Currently published work uses a large mole ratio of Li to carbon atoms in the SWCNT (Li:C) to account for lithium amide formation, however this increases the cost and hazard of the reaction. We report here the systematic understanding of the effect of various parameters on the extent of functionalization using resonant Raman spectroscopy.
View Article and Find Full Text PDFCovalent sidewall functionalization of single-walled carbon nanotubes (SWCNTs) is an important tool for tailoring their properties for research purposes and applications. In this study, SWCNT samples were first functionalized by reductive alkylation using metallic lithium and 1-iodododecane in liquid ammonia. Samples of the alkyl-functionalized SWCNTs were then pyrolyzed under an inert atmosphere at selected temperatures between 100 and 500 °C to remove the addends.
View Article and Find Full Text PDFWe have measured peak and spectrally integrated absolute absorption cross sections for the first (E11) and second (E22) optical transitions of seven semiconducting single-walled carbon nanotube (SWCNT) species in bulk suspensions. Species-specific concentrations were determined using short-wave IR fluorescence microscopy to directly count SWCNTs in a known sample volume. Measured cross sections per atom are inversely related to nanotube diameter.
View Article and Find Full Text PDFThe use of single-walled carbon nanotubes (SWCNTs) in fabricating macroscopic devices requires addressing the challenges of nanotube individualization and organization in the desired functional architectures. Previous success in depositing bare SWCNTs from chlorosulfonic acid onto silicon oxide microporous and mesoporous nanoparticles has motivated this study of their deposition onto fused silica substrates. A facile dip-coating method is reported that produces thin homogeneous films in which the carbon nanotubes are not covered by surfactants or shortened by sonication.
View Article and Find Full Text PDFA new method and instrumentation are described for rapid compositional analysis of single-walled carbon nanotube (SWCNT) samples. The customized optical system uses multiple fixed-wavelength lasers to excite NIR fluorescence from SWCNTs individualized in aqueous suspensions. The emission spectra are efficiently captured by a NIR spectrometer with InGaAs multichannel detector and then analyzed by a computer program that consults a database of SWCNT spectral parameters.
View Article and Find Full Text PDFThe sources of broad backgrounds in visible-near-IR absorption spectra of single-walled carbon nanotube (SWCNT) dispersions are studied through a series of controlled experiments. Chemical functionalization of nanotube sidewalls generates background absorption while broadening and red-shifting the resonant transitions. Extensive ultrasonic agitation induces a similar background component that may reflect unintended chemical changes to the SWCNTs.
View Article and Find Full Text PDFControlled chemical modifications of single-walled carbon nanotubes (SWCNTs) that tune their useful properties have been sought for multiple applications. We found that beneficial optical changes in SWCNTs resulted from introducing low concentrations of oxygen atoms. Stable covalently oxygen-doped nanotubes were prepared by exposure to ozone and then light.
View Article and Find Full Text PDFExisting methods for growing single-walled carbon nanotubes produce samples with a range of structures and electronic properties, but many potential applications require pure nanotube samples. Density-gradient ultracentrifugation has recently emerged as a technique for sorting as-grown mixtures of single-walled nanotubes into their distinct (n,m) structural forms, but to date this approach has been limited to samples containing only a small number of nanotube structures, and has often required repeated density-gradient ultracentrifugation processing. Here, we report that the use of tailored nonlinear density gradients can significantly improve density-gradient ultracentrifugation separations.
View Article and Find Full Text PDFWe have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the data clearly show that our density gradient ultracentrifugation process enriches the metallic fractions in armchair and near-armchair species. We observe that armchair carbon nanotubes constitute more than 50% of each (2n + m) family.
View Article and Find Full Text PDFThe reported fluorescence from inner shells of double-walled carbon nanotubes (DWCNTs) is an intriguing and potentially useful property. A combination of bulk and single-molecule methods was used to study the spectroscopy, chemical quenching, mechanical rigidity, abundance, density, and TEM images of the near-IR emitters in DWCNT samples. DWCNT inner shell fluorescence is found to be weaker than SWCNT fluorescence by a factor of at least 10,000.
View Article and Find Full Text PDF