Publications by authors named "Saulo A Vazquez"

Analytical corrections were developed to improve the accuracy of the PM6 and GFN2-xTB semiempirical quantum mechanical methods for the evaluation of noncovalent interaction energies in alkanes and alkenes. We followed the approach of functional group corrections, wherein the atom-atom pair corrections depend on the nature of the interacting functional groups. The training set includes 21 alkane and 13 alkene complexes taken from the Donchev et al.

View Article and Find Full Text PDF

The nature of the interaction in benzene-containing dimers has been analysed by means of Symmetry Adapted Perturbation Theory (SAPT). The total interaction energy and the preference for the dimers to adopt slipped structures are, apparently, consequence of the balance between repulsion and dispersion. However, our results indicate that this only holds when trends are analysed using fixed intermolecular distances.

View Article and Find Full Text PDF

Recently, we reported a new approach to develop pairwise analytical corrections to improve the description of noncovalent interactions, by approximate methods of electronic structures, such as semiempirical quantum mechanical (SQM) methods. In particular, and as a proof of concept, we used the PM6 Hamiltonian and we named the method PM6-FGC, where the FGC acronym, corresponding to Functional Group Corrections, emphasizes the idea that the corrections work for specific functional groups rather than for individual atom pairs. The analytical corrections were derived from fits to B3LYP-D3/def2-TZVP (reference).

View Article and Find Full Text PDF

A new approach is presented to improve the performance of semiempirical quantum mechanical (SQM) methods in the description of noncovalent interactions. To show the strategy, the PM6 Hamiltonian was selected, although, in general, the procedure can be applied to other semiempirical Hamiltonians and to different methodologies. A set of small molecules were selected as representative of various functional groups, and intermolecular potential energy curves (IPECs) were evaluated for the most relevant orientations of interacting molecular pairs.

View Article and Find Full Text PDF

AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem.

View Article and Find Full Text PDF

Vibrationally excited deuterium fluoride (DF) formed by fluorine atom reaction with a solvent was found (, , 347, 530) to relax rapidly (less than 10 ps) in acetonitrile- (CDCN) and dichloromethane- (CDCl). However, insights into how CDCl facilitates this energy relaxation have so far been lacking, given the weak interaction between DF and a single CDCl. In this work, we report the results of reactive simulations with a two-state reactive empirical valence bond (EVB) potential to study the energy deposited into nascent DF after transition-state passage and of nonequilibrium molecular dynamics simulations using multiple different potential energy functions to model the relaxation dynamics.

View Article and Find Full Text PDF

The substituent effect in monosubstituted benzene dimers mostly follows changes on electrostatics mainly controlled by the direct interaction of the substituent and the other phenyl ring, whereas the contribution from the interacting rings is smaller. As the substituent is located further away the two contributions become of similar magnitude, so the global result is a combination of both effects. These trends are confirmed in larger systems containing a contact between phenyl rings; at closer distances the interaction of the substituent and the other ring clearly dominates over changes associated with the substituted ring, but as the substituent is located further away its contribution decreases and the contribution from the ring becomes more relevant.

View Article and Find Full Text PDF

The tsscds method, recently developed in our group, discovers chemical reaction mechanisms with minimal human intervention. It employs accelerated molecular dynamics, spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction paths and to solve the kinetics at the experimental conditions. In the present review, its application to solve mechanistic/kinetics problems in different research areas will be presented.

View Article and Find Full Text PDF

A new software, called tsscds2018, has been developed to discover reaction mechanisms and solve the kinetics in a fully automated fashion. The program employs algorithms based on Graph Theory to find transition state (TS) geometries from accelerated semiempirical dynamics simulations carried out with MOPAC2016. Then, the TSs are connected to the corresponding minima and the reaction network is obtained.

View Article and Find Full Text PDF

The potential energy surface involved in the thermal decomposition of 1-propanol radicals was investigated in detail using automated codes (tsscds2018 and Q2DTor). From the predicted elementary reactions, a relevant reaction network was constructed to study the decomposition at temperatures in the range 1000-2000 K. Specifically, this relevant network comprises 18 conformational reaction channels (CRCs), which in general exhibit a large wealth of conformers of reactants and transition states.

View Article and Find Full Text PDF

The ground electronic state potential energy surface of acryloyl chloride, CH2CHC(O)Cl, has been mapped using an automated transition state search procedure. A total of 174 minima, 527 TSs, and 20 different dissociation channels have been found. Among others, three novel HCl elimination pathways, namely, a five-center mechanism and two three-body dissociations (leading to CO + HCl + HCCH) have been discovered.

View Article and Find Full Text PDF

The different HCN elimination pathways from vinyl cyanide (VCN) are studied in this paper using RRKM, Kinetic Monte Carlo (KMC), and quasi-classical trajectory (QCT) calculations. A new HCN elimination pathway proves to be very competitive with the traditional 3-center and 4-center mechanisms, particularly at low excitation energies. However, low excitation energies have never been experimentally explored, and the high and low excitation regions are dynamically different.

View Article and Find Full Text PDF

Reactions between Cl atoms and propene can lead to HCl formation either by direct H abstraction or through a chloropropyl addition complex. Barring stabilizing collisions, the chloropropyl radical will either decompose to reactants or form HCl and allyl products. Using velocity-map imaging to measure the quantum state and velocity of the HCl products provides a view into the reaction dynamics, which show signs of both direct and indirect reaction mechanisms.

View Article and Find Full Text PDF

An analytic potential energy function was developed to model both short-range and long-range interactions between protonated peptide ions and perfluorinated hydrocarbon chains. The potential function is defined as a sum of two-body potentials of the Buckingham form. The parameters of the two-body potentials were obtained by fits to intermolecular potential energy curves (IPECs) calculated for CF4, which represents the F and C atoms of a perfluoroalkane chain, interacting with small molecules chosen as representatives of the main functional groups and atoms present in protonated peptide ions: specifically, CH4, NH3, NH4(+), and HCOOH.

View Article and Find Full Text PDF

The collision-induced dissociation (CID) of the [Li(uracil)](+) complex with Xe is studied by means of quasi-classical trajectory calculations. The potential energy surface is obtained "on the fly" from AM1 semiempirical calculations, supplemented with two-body analytical potentials to model the intermolecular interactions. The simulations show that Li(+) production is the primary channel, in agreement with a previous experimental study [M.

View Article and Find Full Text PDF

Ab initio CCSD and CCSD(T) calculations with the 6-311+G(2d,2p) and the 6-311++G(3df,3pd) basis sets were carried out to characterize the vinyl cyanide (C(3)H(3)N) dissociation channels leading to hydrogen cyanide (HCN) and its isomer hydrogen isocyanide (HNC). Our computations predict three elimination channels giving rise to HCN and another four channels leading to HNC formation. The relative HCN/HNC branching ratios as a function of internal energy of vinyl cyanide were computed using RRKM theory and the kinetic Monte Carlo method.

View Article and Find Full Text PDF

The building blocks of a promising class of peptide nanotubes composed of alternating D-alpha-amino acids and (1R,3S)-3-aminocyclohexane (or cyclopentane) carboxylic acid (D-gamma-Ach or D-gamma-Acp) were explored by computational methods. Specifically, density functional theory (DFT) calculations on monomers and dimers of gamma-Ach-based and gamma-Acp-based alpha,gamma-cyclo-hexapeptides and cyclo-octapeptides were carried out to investigate the experimentally observed preference for alpha-alpha over gamma-gamma dimerization, associated with the two types of stacking patterns present in these peptide nanotubes, as well as the preference for heterodimerization versus homodimerization. Full geometry optimizations were performed at the B3LYP/6-31G(d) level, and single point calculations were subsequently carried out with the B3LYP and M05-2X functionals and the 6-31+G(d,p) basis set.

View Article and Find Full Text PDF

The dynamics of collisions of CO2 with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) on gold were investigated by classical trajectory calculations using explicit atom (EA) and united atom (UA) models to represent the F-SAM surface. The CO2 molecule was directed perpendicularly to the surface at initial collision energies of 1.6, 4.

View Article and Find Full Text PDF

Following photodissociation of 2-chloropropene (H(2)CCClCH(3)) at 193 nm, vibration-rotationally resolved emission spectra of HCl (upsilon < or = 6) in the spectral region of 1900-2900 cm(-1) were recorded with a step-scan time-resolved Fourier-transform spectrometer. All vibrational levels show a small low-J component corresponding to approximately 400 K and a major high-J component corresponding to 7100-18,700 K with average rotational energy of 39+/-(3)(11) kJ mol(-1). The vibrational population of HCl is inverted at upsilon = 2, and the average vibrational energy is 86+/-5 kJ mol(-1).

View Article and Find Full Text PDF

Dynamics of Ar atom collisions with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) surface on gold were investigated by classical trajectory simulations and atomic beam scattering techniques. Both explicit-atom (EA) and united-atom (UA) models were used to represent the F-SAM surface; in the UA model, the CF3 and CF2 units are represented as single pseudoatoms. Additionally the nonbonded interactions in both models are different.

View Article and Find Full Text PDF

Multiconfigurational CASSCF and CASPT2 calculations were performed to investigate the enol --> keto tautomerization in the lowest singlet excited state of the 7-hydroxyquinoline.(NH3)3 cluster. Two different reaction mechanisms were explored.

View Article and Find Full Text PDF

Direct-dynamics canonical variational transition-state theory calculations with microcanonically optimized multidimensional transmission coefficient (CVT/muOMT) for tunneling were carried out at the MPWB1K/6-31+G(d,p) level to study the [1,7] sigmatropic hydrogen rearrangement in 7-methylocta-1,3(Z),5(Z)-triene. This compound has seven conformers, of which only one leads to products, although all of them have to be included in the theoretical treatment. The calculated CVT/muOMT rate constants are in good agreement with the available experimental data.

View Article and Find Full Text PDF

The assignment of the absolute configuration of alpha-chiral primary amines by complexation of their MPA derivatives with Ba2+ and NMR analysis of the changes generated is presented. All that is required is (a) the derivatization of the amine of unknown configuration with one enantiomer of the auxiliary reagent (MPA), either (R) or (S)-alpha-methoxyphenylacetic acid, (b) the recording of the 1H NMR spectrum of the resulting amide in MeCN-d3, (c) the addition of Ba(ClO4)2 to the NMR tube, and (d) the recording of a second spectrum after a few minutes of shaking. The above steps take a few minutes and are followed by an analysis of the shifts (measured as Deltadelta(Ba)) produced on the L1 and L2 substituents of the amine by the addition of Ba2+ and their comparison with those expected from the conformational changes produced by the complexation.

View Article and Find Full Text PDF

Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation.

View Article and Find Full Text PDF

Quasiclassical trajectory calculations are employed to investigate the dynamics of collision-induced dissociation (CID) of Cr(CO)6 + with Xe atoms at collision energies ranging from 1.3 to 5.0 eV.

View Article and Find Full Text PDF