Publications by authors named "Saul Needle"

Reducing the required frequence of drug dosing can improve the adherence of patients to chronic treatments. Hence, drugs with longer half-lives are highly desirable. One of the most promising approaches to extend the half-life of drugs is conjugation to human serum albumin (HSA).

View Article and Find Full Text PDF

Thymosin beta 4 (Tβ4) was previously shown to reduce infarct size and improve contractile performance in chronic myocardial ischemic injury via two phases of action: an acute phase, just after injury, when Tβ4 preserves ischemic myocardium via antiapoptotic or anti-inflammatory mechanisms; and a chronic phase, when Tβ4 activates the growth of vascular or cardiac progenitor cells. In order to differentiate between the effects of Tβ4 during the acute and during the chronic phases, and also in order to obtain detailed hemodynamic and biomarker data on the effects of Tβ4 treatment suitable for use in clinical studies, we tested Tβ4 in a rat model of chronic myocardial ischemia using two dosing regimens: short term dosing (Tβ4 administered only during the first 3 days following injury), and long term dosing (Tβ4 administered during the first 3 days following injury and also every third day until the end of the study). Tβ4 administered throughout the study reduced infarct size and resulted in significant improvements in hemodynamic performance; however, chamber volumes and ejection fractions were not significantly improved.

View Article and Find Full Text PDF

A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF).

View Article and Find Full Text PDF

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) have been recently derived and are used for basic research, cardiotoxicity assessment, and phenotypic screening. However, the hiPS-CM phenotype is dependent on their derivation, age, and culture conditions, and there is disagreement as to what constitutes a functional hiPS-CM. The aim of the present study is to characterize the temporal changes in hiPS-CM phenotype by examining five determinants of cardiomyocyte function: gene expression, ion channel functionality, calcium cycling, metabolic activity, and responsiveness to cardioactive compounds.

View Article and Find Full Text PDF

Background: Hypoxia inducible factors (HIFs) are transcription factors that are regulated by HIF-prolyl 4-hydroxylases (PHDs) in response to changes in oxygen tension. Once activated, HIFs play an important role in angiogenesis, erythropoiesis, proliferation, cell survival, inflammation, and energy metabolism. We hypothesized that GSK360A, a novel orally active HIF-PHD inhibitor, could facilitate local and systemic HIF-1 alpha signaling and protect the failing heart after myocardial infarction (MI).

View Article and Find Full Text PDF
Article Synopsis
  • GW813893 is a new small molecule that selectively inhibits Factor Xa (FXa), showing promise as an oral antithrombotic therapy based on preclinical studies.
  • The compound demonstrated strong inhibitory effects on FXa and prothrombinase with high selectivity, and successfully reduced thrombotic activity in various animal models without increasing bleeding risk.
  • Overall, GW813893 exhibits the characteristics of a potent and safe oral anticoagulant, warranting further investigation for potential clinical use.
View Article and Find Full Text PDF

Objective: Neointimal development following balloon angioplasty involves many factors including smooth muscle cell (SMC) migration and proliferation and extracellular matrix (ECM) remodeling. Further, in hypercholesterolemic (HC) conditions, there is an influx of macrophage foam cells (FCs) into the restenotic lesion, which also involves degradation of the basement membrane and surrounding ECM. The ECM remodeling that occurs during restenosis has been shown to be mediated by various proteases.

View Article and Find Full Text PDF

RPR127963 demonstrates an excellent pharmacokinetic profile in several species and was found to be efficacious in the prevention of restenosis in a Yucatan mini-pig model upon oral administration of 1-5 mg/kg. The in vitro selectivity profile and SAR of the highly optimized PDGF-R tyrosine kinase inhibitor are highlighted.

View Article and Find Full Text PDF

Novel substituted 2-anilino- and 2-cycloalkylaminoquinoxalines have been found to be useful and selective inhibitors of PDGF-R autophosphorylation. Replacement of an anilino-substituent with substituted cyclohexylamino- or norbornylamino substituents led to significant improvements in the pharmacokinetic profile of these analogues.

View Article and Find Full Text PDF

Activities of vascular smooth muscle cells (SMCs) such as proliferation, migration, and matrix production contribute to restenosis following clinical interventions of angioplasty and stent placement. Because activation of platelet-derived growth factor (PDGF)-receptor tyrosine kinase (PDGFr-TK) influences these processes and promotes restenosis, TKI963, an inhibitor of the PDGFr-TK was discovered, and its efficacy was evaluated in blocking stent-induced restenosis as analyzed by intravascular ultrasound (IVUS). TKI963, a low-molecular-weight compound, inhibited the cell-free PDGFbetar-TK with a K(i) value of 56 +/- 14 nM.

View Article and Find Full Text PDF