Accurate short- and mid-term blood glucose predictions are crucial for patients with diabetes struggling to maintain healthy glucose levels, as well as for individuals at risk of developing the disease. Consequently, numerous efforts from the scientific community have focused on developing predictive models for glucose levels. This study harnesses physiological data collected from wearable sensors to construct a series of data-driven models based on deep learning approaches.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2023
Currently, most reliable and commercialized artificial pancreas systems for type 1 diabetes are hybrid closed-loop systems, which require the user to announce every meal and its size. However, estimating the amount of carbohydrates in a meal and announcing each and every meal is an error-prone process that introduces important uncertainties to the problem, which when not considered, lead to sub-optimal outcomes of the controller. To address this problem, we propose a novel deep-learning-based model for probabilistic glucose prediction, called the Input and State Recurrent Kalman Network (ISRKN), which consists in the incorporation of an input and state Kalman filter in the latent space of a deep neural network so that the posterior distributions can be computed in closed form and the uncertainty can be propagated using the Kalman equations.
View Article and Find Full Text PDF