Publications by authors named "Saul Karpen"

knockout (KO) mice lack the liver enzyme responsible for synthesis of 6-hydroxylated muricholate bile acid species and possess a more hydrophobic human-like bile acid composition. KO mice develop cholestatic liver injury that can be prevented by the administration of an ileal bile acid transporter (IBAT) inhibitor. In this study, we investigated the potential of an ileal bile acid transporter (IBAT) inhibitor (SC-435) and steroidal farnesoid X receptor (FXR) agonist (cilofexor) to modulate established hepatobiliary injury and the consequent relationship of intrahepatic bile acid content and hydrophobicity to the cholestatic liver injury phenotype.

View Article and Find Full Text PDF

Backgrounds & Aims: Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e.

View Article and Find Full Text PDF

The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images.

View Article and Find Full Text PDF
Article Synopsis
  • High serum levels of matrix metalloproteinase-7 (MMP-7) have been identified as a potential diagnostic biomarker for biliary atresia (BA) in infants with cholestasis, showing strong accuracy in a large North American study.
  • MMP-7 demonstrated a high area under the receiver operating characteristic (AUROC) score of 0.90, with a sensitivity of 94.03% and a specificity of 77.78% at a cutoff of 52.8 ng/mL, outperforming other clinical markers such as gamma-glutamyl transferase.
  • Results support using MMP-7 in clinical settings to improve diagnostic efficiency for BA, as cutoff values vary with different
View Article and Find Full Text PDF

Background: Ductular reactivity is central to the pathophysiology of cholangiopathies. Mechanisms underlying the reactive phenotype activation by exogenous inflammatory mediators and bile acids are poorly understood.

Methods: Using human extrahepatic cholangiocyte organoids (ECOs) we developed an injury model emulating the cholestatic microenvironment with exposure to inflammatory mediators and various pathogenic bile acids.

View Article and Find Full Text PDF

Bile acids (BAs) are gastrointestinal metabolites that serve dual functions in lipid absorption and cell signaling. BAs circulate actively between the liver and distal small intestine (i.e.

View Article and Find Full Text PDF

Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis.

View Article and Find Full Text PDF

Background And Aims: Alagille syndrome (ALGS) is characterized by chronic cholestasis with associated pruritus and extrahepatic anomalies. Maralixibat, an ileal bile acid transporter inhibitor, is an approved pharmacologic therapy for cholestatic pruritus in ALGS. Since long-term placebo-controlled studies are not feasible or ethical in children with rare diseases, a novel approach was taken comparing 6-year outcomes from maralixibat trials with an aligned and harmonized natural history cohort from the G lobal AL agille A lliance (GALA) study.

View Article and Find Full Text PDF

Background: Our objective was to better understand the natural history and disease modifiers of Alpha-1-antitrypsin deficiency (AATD), a common genetic liver disease causing hepatitis and cirrhosis in adults and children. The clinical course is highly variable. Some infants present with neonatal cholestasis, which can resolve spontaneously or progress to cirrhosis; others are well in infancy, only to develop portal hypertension later in childhood.

View Article and Find Full Text PDF

Background: Children admitted to the pediatric intensive care unit (PICU), after liver transplantation, frequently require analgesia and sedation in the immediate postoperative period. Our objective was to assess trends and variations in sedation and analgesia used in this cohort.

Methods: Multicenter retrospective cohort study using the Pediatric Health Information System from 2012 to 2022.

View Article and Find Full Text PDF

Background & Aims: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies.

Methods: Cholestasis was induced by bile duct ligation (BDL) in mice.

View Article and Find Full Text PDF

Background: Sarcopenia occurs in pediatric chronic liver disease, although the prevalence and contributing factors in genetic intrahepatic cholestasis are not well-described. The objective of this study was to measure muscle mass in school-aged children with genetic intrahepatic cholestasis and assess relationships between sarcopenia, clinical variables, and outcomes.

Methods: Estimated skeletal muscle mass (eSMM) was calculated on dual-energy x-ray absorptiometry obtained in a Childhood Liver Disease Research Network study of children with bile acid synthesis disorders(BASD) alpha-1 antitrypsin deficiency (a1ATd), chronic intrahepatic cholestasis (CIC), and Alagille syndrome (ALGS).

View Article and Find Full Text PDF

Biliary atresia is a fibroinflammatory neonatal disease with no effective therapies. A subset of cases (10-20%) is associated with laterality defects - labeled biliary atresia splenic malformation (BASM) syndrome. Recently, whole-exome sequencing of patients with BASM identified deleterious variants in PKD1L1.

View Article and Find Full Text PDF

Biliary atresia (BA) is the most prevalent serious liver disease of infancy and childhood, and the principal indication for liver transplantation in pediatrics. BA is best considered as an idiopathic panbiliary cholangiopathy characterized by obstruction of bile flow and consequent cholestasis presenting during fetal and perinatal periods. While several etiologies have been proposed, each has significant drawbacks that have limited understanding of disease progression and the development of effective treatments.

View Article and Find Full Text PDF

Current means to quantify cells, gene expression, and fibrosis of liver histological slides are not standardized in the research community and typically rely upon data acquired from a selection of random regions identified in each slide. As such, analyses are subject to selection bias as well as limited subsets of available data elements throughout the slide. A whole-slide analysis of cells and fibrosis would provide for a more accurate and complete quantitative analysis, along with minimization of intra- and inter-experimental variables.

View Article and Find Full Text PDF

Background & Aims: PEDFIC 2, an ongoing, open-label, 72-week study, evaluates odevixibat, an ileal bile acid transporter inhibitor, in patients with progressive familial intrahepatic cholestasis.

Methods: PEDFIC 2 enrolled and dosed 69 patients across two cohorts; all received odevixibat 120 μg/kg per day. Cohort 1 comprised children from PEDFIC 1, and cohort 2 comprised new patients (any age).

View Article and Find Full Text PDF

Advances in microsystem engineering have enabled the development of highly controlled models of the liver that better recapitulate the unique biological conditions. In just a few short years, substantial progress has been made in creating complex mono- and multi-cellular models that mimic key metabolic, structural, and oxygen gradients crucial for liver function. Here we review: 1) the state-of-the-art in liver-centric microphysiological systems and 2) the array of liver diseases and pressing biological and therapeutic challenges which could be investigated with these systems.

View Article and Find Full Text PDF

Background: Alterations in both mitochondrial DNA (mtDNA) and nuclear DNA genes affect mitochondria function, causing a range of liver-based conditions termed mitochondrial hepatopathies (MH), which are subcategorized as mtDNA depletion, RNA translation, mtDNA deletion, and enzymatic disorders. We aim to enhance the understanding of pathogenesis and natural history of MH.

Methods: We analyzed data from patients with MH phenotypes to identify genetic causes, characterize the spectrum of clinical presentation, and determine outcomes.

View Article and Find Full Text PDF

Background: In children with biliary atresia (BA), pathologic structural changes within the heart, which define cirrhotic cardiomyopathy, are associated with adverse perioperative outcomes. Despite their clinical relevance, little is known about the pathogenesis and triggers of pathologic remodeling. Bile acid excess causes cardiomyopathy in experimental cirrhosis, but its role in BA is poorly understood.

View Article and Find Full Text PDF

The pronounced choleretic properties of 24-norUrsodeoxycholic acid (norUDCA) to induce bicarbonate-rich bile secretion have been attributed to its ability to undergo cholehepatic shunting. The goal of this study was to identify the mechanisms underlying the choleretic actions of norUDCA and the role of the bile acid transporters. Here, we show that the apical sodium-dependent bile acid transporter (ASBT), organic solute transporter-α (OSTα), and organic anion transporting polypeptide 1a/1b (OATP1a/1b) transporters are dispensable for the norUDCA stimulation of bile flow and biliary bicarbonate secretion.

View Article and Find Full Text PDF

Background And Aims: A recent multicenter genetic exploration of the biliary atresia splenic malformation syndrome identified mutations in the ciliary gene PKD1L1 as candidate etiologic contributors. We hypothesized that deletion of Pkd1l1 in developing hepatoblasts would lead to cholangiopathy in mice.

Approach And Results: CRISPR-based genome editing inserted loxP sites flanking exon 8 of the murine Pkd1l1 gene.

View Article and Find Full Text PDF

Background & Aims: Despite recent progress, non-invasive tests for the diagnostic assessment and monitoring of non-alcoholic fatty liver disease (NAFLD) remain an unmet need. Herein, we aimed to identify diagnostic signatures of the key histological features of NAFLD.

Methods: Using modified-aptamer proteomics, we assayed 5,220 proteins in each of 2,852 single serum samples from 636 individuals with histologically confirmed NAFLD.

View Article and Find Full Text PDF

Biliary atresia, a fibro-obliterative disease of the newborn, is usually initially treated by Kasai portoenterostomy, although there are many variations in technique and different options for post-operative adjuvant medical therapy. A questionnaire on such topics (e.g.

View Article and Find Full Text PDF