Deep Learning models have presented promising results when applied to Agriculture 4.0. Among other applications, these models can be used in disease detection and fruit counting.
View Article and Find Full Text PDFThere is a constant risk of iron ore collapsing during its transfer between processing stages in beneficiation plants. Existing instrumentation is not only expensive but also complex and challenging to maintain. In this research, we propose using edge artificial intelligence for early detection of landslide risk based on images of iron ore transported on conveyor belts.
View Article and Find Full Text PDFEcological environments research helps to assess the impacts on forests and managing forests. The usage of novel software and hardware technologies enforces the solution of tasks related to this problem. In addition, the lack of connectivity for large data throughput raises the demand for edge-computing-based solutions towards this goal.
View Article and Find Full Text PDFFrequent and accurate inspections of industrial components and equipment are essential because failures can cause unscheduled downtimes, massive material, and financial losses or even endanger workers. In the mining industry, belt idlers or rollers are examples of such critical components. Although there are many precise laboratory techniques to assess the condition of a roller, companies still have trouble implementing a reliable and scalable procedure to inspect their field assets.
View Article and Find Full Text PDF