This paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; in the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through magnetic dipoles created by the surface currents, leading to absorption peaks.
View Article and Find Full Text PDFA biosensor platform based on the plasmonic resonance of graphene in the terahertz (THz) range (0.1 to 10 THz) is designed and investigated. The initial design is to create a nanofluidic channel as a sensing layer in the substrate of a biosensor grounded by metal.
View Article and Find Full Text PDFA periodic planar metamaterial sensor in the terahertz band based on surface plasmon polariton resonances is proposed and studied. The unit cell includes four half-elliptical graphene rings located on a three-layer substrate including a layer, an air gap, and another layer. The embedded air gap between the two layers of improves the sensitivity of the sensor.
View Article and Find Full Text PDF