Publications by authors named "Saugata Mahapatra"

Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type and a T4SS-null mutant at 8 and 24 h postinfection.

View Article and Find Full Text PDF

Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process.

View Article and Find Full Text PDF

is the causative agent of Q fever and an obligate intracellular pathogen in nature that survives and grows in a parasitophorous vacuole (PV) within eukaryotic host cells. promotes intracellular survival by subverting apoptotic and pro-inflammatory signaling pathways that are typically regulated by nuclear transcription factor-κB (NF-κB). We and others have demonstrated that NMII proteins inhibit expression of pro-inflammatory cytokines and induce expression of anti-apoptotic genes during infection.

View Article and Find Full Text PDF

Q fever, a zoonotic disease, is caused by a gram-negative intracellular bacterium, Coxiella burnetii. Although normally transmitted during exposure to infectious aerosols, C. burnetii is also found in arthropod vectors.

View Article and Find Full Text PDF

Background: Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis.

View Article and Find Full Text PDF