Publications by authors named "Satyanarayan Pattnaik"

A nanoparticle is the simplest structural component due to its nanometer-sized diameter. Nanoparticles are typically atoms or molecules that generate a radius (or diameter) of less than 100 nm when bonded collectively. The latest developments in nanotechnology provide a wide range of methods for studying and monitoring various medical and biological processes at the nanoscale.

View Article and Find Full Text PDF

Treatment modalities of various cancers and the delivery strategies of anticancer agents have evolved significantly in the recent past. The severity and fatality of the disease and hurdles to the effective delivery of therapeutic agents have drawn the attention of researchers across the world for proposing novel and effective drug delivery strategies for anticancer therapeutics. Attempts have been made to propose solutions to the diverse limitations like poor pharmacokinetics and higher systemic toxicities of the traditional delivery of anticancer agents.

View Article and Find Full Text PDF

Objective: The purpose of the study is to assess the bioavailability and neuroprotective effect of hesperetin (Hesp)-loaded nanofibers.

Methods: Electrospinning was used to create and characterize polyvinyl pyrrolidone-based Hesp-loaded nanofibers. To evaluate the produced nanofibers, preclinical studies were conducted.

View Article and Find Full Text PDF

Poor aqueous solubility of both, existing drug molecules and those which are currently in the developmental stage, have posed a great challenge to pharmaceutical scientists because they often exhibit poor dissolution behavior and subsequent poor and erratic bioavailability. This has triggered extensive research to explore nanotechnology-based technology platforms for possible rescue. Recently, nanofibers have been exploited widely for diverse biomedical applications including for drug delivery.

View Article and Find Full Text PDF

The poor aqueous solubility of candidate drugs has presented a great challenge to formulation scientists for their effective oral delivery. Poor solubility is often associated with poor dissolution behavior and, subsequently, poor bioavailability for those drugs when intestinal absorption is dissolution rate limited. In the present study electrospun polymeric nanofibers were developed to address the poor aqueous solubility of ibuprofen, a Biopharmaceutic Classification System (BCS) class-II drug.

View Article and Find Full Text PDF

Purpose: Adverse effects are noticeable immediately after vaccination, especially when vaccinated to healthy people at the time of vaccination. The vaccine may cause adverse events which are very rare but adverse event following immunization surveillance becomes correspondingly more important in a less studied population like India. Hence, there is a need for carrying out a study pertaining to vaccine safety in the pediatric population of age 0-12 years and assessing the events occurring post-vaccination.

View Article and Find Full Text PDF

Despite of the clinical, scientific, and commercial development, many patients complain about pain on the intravenous injection of propofol. Present work was undertaken to develop a stable multi-dose propofol nano-emulsion using 32 full factorial design which is supposed to be associated with less anticipated pain during intravenous administration. Propofol was incorporated in the mixture of disodium edetate, sodium oleate, thioglycerol, glycerol, egg lecithin, soyabean oil and medium chain triglyceride oil, and homogenization was continued at controlled temperature of 20 °C.

View Article and Find Full Text PDF
Article Synopsis
  • Ventricular septal rupture (VSR) is a serious complication after a heart attack, and its surgical repair carries a high risk of early mortality, which varies based on different medical centers.
  • The study reviews the decision-making process and outcomes of surgery for postinfarction VSR, indicating that preoperative renal failure, severe left ventricular dysfunction, and higher Killip class are linked to increased early mortality.
  • Early surgical intervention can prevent further organ damage, while the presence of a small residual VSD does not significantly impact patients' quality of life in the midterm after surgery.
View Article and Find Full Text PDF

Rhizomes of the plant has been traditionally used in medicine and culinary practices in India. It possesses various pharmacological effect, namely, antioxidant, hepatoprotective, anti-inflammatory, anti-thrombosis, and anti-apoptotic. The study was undertaken to assess the effect of curcumin and curcumin loaded mesoporous silica nanoparticles (MSNs) against doxorubicin (DOX)-induced myocardial toxicity in rats.

View Article and Find Full Text PDF

This review brings forth the potential of thiazole derivatives for their anticancer activities. The emphasis is placed on the structural diversity of thiazole derivatives, responsible for their specific anticancer activity. Multiple classes of thiazole derivatives such as Schiff base, mono-, di-, tri-, and heterocyclic substituents that possess anticancer activity have been exemplified.

View Article and Find Full Text PDF

Graphene is the first carbon-based two dimensional atomic crystal and has gained much attention since its discovery by Geim and co-workers in 2004. Graphene possesses a large number of material parameters such as superior mechanical stiffness, strength and elasticity, very high electrical and thermal conductivity, among many others. It is the strongest and the most stretchable known material, which has the record thermal conductivity and very high intrinsic mobility, as well as being completely impermeable.

View Article and Find Full Text PDF

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs.

Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture.

View Article and Find Full Text PDF

Background And Objective: There has been relatively little investigation of the effect of temperature on skin permeation compared to other methods of penetration enhancement. A principal physicochemical factor which controls the passive diffusion of a solute from a vehicle into the skin arises from the skin temperature. The aim of this ex vivo study was to probe into the effect of heat on transdermal absorption of alfuzosin hydrochloride from ethyl cellulose-polyvinyl pyrrolidone (EC-PVP) based transdermal systems.

View Article and Find Full Text PDF

The in vivo assessment of percutaneous absorption of molecules is a very important step in the evaluation of any transdermal drug delivery system and a key goal in the design and optimization of transdermal dosage forms lies in understanding the factors that determine a good in vivo performance. The objective of the present investigation is to assess the in vivo performance of an optimized transdermal system of ondansetron hydrochloride in rabbits and to generate preclinical pharmacokinetic data. The pharmacokinetic performance of ondansetron hydrochloride following intravenous and transdermal administration was studied in rabbits following non compartmental pharmacokinetic analysis.

View Article and Find Full Text PDF

The present study was undertaken to develop a suitable transdermal matrix patch of ketorolac tromethamine with different proportions of polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC) using a D-optimal mixture design. The prepared transdermal patches were subjected to different physicochemical evaluation. The surfacet opography of the patches was examined by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Context: A nonoral alternative such as transdermal system is desired to improve bioavailability and to maintain a constant and prolonged drug level with reduced frequency of dosing.

Objective: The objective of the investigation is to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the influence of chemical permeation enhancers (CPEs) on the percutaneous permeation pattern.

Material And Methods: A D-optimal mixture design was used to study the influence of CPE with oleic acid (OA), lauric acid, and propylene glycol (PG) as mixture components.

View Article and Find Full Text PDF

The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc.

View Article and Find Full Text PDF

Purpose: The main objective of the investigation was to develop a transdermal therapeutic system for alfuzosin hydrochloride and to study the effects of polymeric system and loading dose on the in vitro skin permeation pattern.

Materials And Methods: Principles of experimental design have been exploited to develop the dosage form. Ratio of ethyl cellulose (EC) and polyvinyl pyrrolidone (PVP) and loading dose were selected as independent variables and their influence on the cumulative amount of alfuzosin hydrochloride permeated per cm2 of human cadaver skin at 24 h (Q24), permeation flux (J) and steady state permeability coefficient (PSS) were studied using experimental design.

View Article and Find Full Text PDF

The present investigation aims at development of pressure sensitive adhesive (PSA) based drug in adhesive type transdermal systems of ondansetron hydrochloride with higher permeation flux. The effect of mixture of two chemical permeation enhancers (oleic acid and lauric acid diethanolamide); and drug loading dose on the ex vivo human cadaver skin permeation from the transdermal patches has been investigated using a d-optimal combined mixture design. Incorporation of chemical permeation enhancers significantly improved the permeability parameters and it was also found that blend of permeation enhancers is more effective than either permeation enhancer.

View Article and Find Full Text PDF

In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h.

View Article and Find Full Text PDF

This present study is a preliminary exploration of the affinity between a carboxylic model drug ibuprofen and aluminum hydroxide. Ibuprofen was comilled with aluminum hydroxide in different weight ratios in the solid state and was characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. XRD and SEM studies indicated complete interaction of ibuprofen with aluminum hydroxide and complete amorphization of aluminum hydroxide-ibuprofen complexed salt as well, on comilling with aluminum hydroxide at 1:2 ratio.

View Article and Find Full Text PDF

This review focuses on the recent techniques of solubilization for the attainment of effective absorption and improved bioavailability. Solubilization may be affected due to cosolvent water interaction or altered crystal structure by cosolvent addition. Micellar solubilization could be affected by both ionic strength and pH.

View Article and Find Full Text PDF

Ibuprofen was milled in the solid state with kaolin (hydrated aluminium silicate) in different ratio to examine the extent of transformation from crystalline to amorphous state. The physical stability of the resultant drug was also investigated. X-ray powder diffractometry (XRD) and birefringence by Scanning Electron Microscopy (SEM) studies indicated almost complete amorphization of the drug on ball milling with kaolin at 1:2 ratio.

View Article and Find Full Text PDF

The interaction pattern of gatifloxacin was temperature-dependent Langmuir isotherm, and the Langmuir coefficients increased as the temperature was raised. The perturbation experiment conducted on this system showed that the nature of interaction was irreversible. The enthalpy change is a positive value, indicating the existence of increased activation energy as the temperature is raised.

View Article and Find Full Text PDF