The glass-like slow dynamics in confluent epithelial monolayers is crucial for wound healing, embryogenesis, cancer progression, Experiments have indicated several unusual properties in these systems. Unlike ordinary glasses, the glassiness in cellular systems strongly correlates with their static properties and is sub-Arrhenius. These results imply that the slow dynamics in epithelial monolayers is either not glassy or the underlying mechanism is different from ordinary glasses.
View Article and Find Full Text PDFAs wounds heal, embryos develop, cancer spreads, or asthma progresses, the cellular monolayer undergoes a glass transition between solid-like jammed and fluid-like flowing states. During some of these processes, the cells undergo an epithelial-to-mesenchymal transition (EMT): they acquire in-plane polarity and become motile. Thus, how motility drives the glassy dynamics in epithelial systems is critical for the EMT process.
View Article and Find Full Text PDF