Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow.
View Article and Find Full Text PDFSolving environmental and social challenges such as climate change requires a shift from our current non-renewable manufacturing model to a sustainable bioeconomy. To lower carbon emissions in the production of fuels and chemicals, plant biomass feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic thermophile is a promising bacterium for bioconversion due to its capability to efficiently degrade lignocellulosic biomass.
View Article and Find Full Text PDFKinetic models predict the metabolic flows by directly linking metabolite concentrations and enzyme levels to reaction fluxes. Robust parameterization of organism-level kinetic models that faithfully reproduce the effect of different genetic or environmental perturbations remains an open challenge due to the intractability of existing algorithms. This paper introduces Kinetics-based Fluxomics Integration Tool (K-FIT), a robust kinetic parameterization workflow that leverages a novel decomposition approach to identify steady-state fluxes in response to genetic perturbations followed by a gradient-based update of kinetic parameters until predictions simultaneously agree with the fluxomic data in all perturbed metabolic networks.
View Article and Find Full Text PDFClostridium thermocellum is a candidate for consolidated bioprocessing by carrying out both cellulose solubilization and fermentation. However, despite significant efforts the maximum ethanol titer achieved to date remains below industrially required targets. Several studies have analyzed the impact of increasing ethanol concentration on C.
View Article and Find Full Text PDFBackground: Genome-scale metabolic network models and constraint-based modeling techniques have become important tools for analyzing cellular metabolism. Thermodynamically infeasible cycles (TICs) causing unbounded metabolic flux ranges are often encountered. TICs satisfy the mass balance and directionality constraints but violate the second law of thermodynamics.
View Article and Find Full Text PDFComputational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.
View Article and Find Full Text PDFSynth Syst Biotechnol
December 2017
Metabolic pathways reflect an organism's chemical repertoire and hence their elucidation and design have been a primary goal in metabolic engineering. Various computational methods have been developed to design novel metabolic pathways while taking into account several prerequisites such as pathway stoichiometry, thermodynamics, host compatibility, and enzyme availability. The choice of the method is often determined by the nature of the metabolites of interest and preferred host organism, along with computational complexity and availability of software tools.
View Article and Find Full Text PDFBackground: is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes.
View Article and Find Full Text PDFFEMS Microbiol Lett
February 2016
Anaerobic Clostridium spp. is an important bioproduction microbial genus that can produce solvents and utilize a broad spectrum of substrates including cellulose and syngas. Genome-scale metabolic (GSM) models are increasingly being put forth for various clostridial strains to explore their respective metabolic capabilities and suitability for various bioconversions.
View Article and Find Full Text PDFBackground: Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. In particular, Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development.
View Article and Find Full Text PDF