Cation incorporation emerges as a promising approach for improving the performance of the kesterite CuZnSn(S,Se) (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of InS is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process.
View Article and Find Full Text PDFTransition metal phosphides are a new class of materials that have attracted enormous attention as a potential electrode for supercapacitors (SCs) compared to metal oxides/hydroxides and metal sulfides due to their strong redox-active behaviour, good electrical conductivity, layered structure, low cost, and high chemical and thermal stability. Recently, several efforts have been made to develop nickel phosphides (NiP) (NPs) for high-performance SCs. The electrochemical properties of NPs can be easily tuned by several innovative approaches, such as heteroatom doping, defect engineering, and developing a hollow architecture.
View Article and Find Full Text PDF