Herein, we describe the discovery and optimization of a novel series that inhibits bacterial DNA gyrase and topoisomerase IV binding to, and stabilization of, DNA cleavage complexes. Optimization of this series led to the identification of compound , which has potent activity against Gram-positive bacteria, a favorable safety profile, and excellent pharmacokinetic properties. Compound was found to be efficacious against fluoroquinolone-sensitive infection in a mouse thigh model at lower doses than moxifloxacin.
View Article and Find Full Text PDFSREBP cleavage-activating protein (SCAP) is a key protein in the regulation of lipid metabolism and a potential target for treatment of dyslipidemia. SCAP is required for activation of the transcription factors SREBP-1 and -2. SREBPs regulate the expression of genes involved in fatty acid and cholesterol biosynthesis, and LDL-C clearance through the regulation of LDL receptor (LDLR) and PCSK9 expression.
View Article and Find Full Text PDFNucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity.
View Article and Find Full Text PDFLipoprotein(a) [Lp(a)] has recently been recognized as an independent risk factor for coronary heart disease. While plasma Lp(a) levels are correlated with cardiovascular risk, the mechanism by which this particle contributes to atherosclerosis is largely unknown. Although humanized transgenic mouse model has recently been described to study Lp(a) biology, non-human primates (NHP) are the only preclinical model available that allow study of the role of Lp(a) in atherosclerosis in an innate setting.
View Article and Find Full Text PDFOncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models.
View Article and Find Full Text PDFIn this study, recombinant AAV vectors pseudotyped with viral capsids derived from AAV serotypes 7 and 8 were evaluated for gene transfer in the murine striatum relative to vectors pseudotyped with AAV serotypes 2, 5, and 6. In comparison with rAAV serotype 2, pseudotyped vectors derived from AAV-7 and AAV-8 have increased transduction efficiency in the murine CNS, with the rank order rAAV-7 > rAAV-8 > rAAV-5 > rAAV-2 = rAAV-6, with all vectors demonstrating a marked tropism for neuronal transduction. Pseudotyped rAAV vector gene transfer in the brain after preimplantation of a murine 4C8 glioblastoma tumor was also evaluated.
View Article and Find Full Text PDFThe presence of the blood-brain barrier complicates drug delivery in the development of therapeutic agents for the treatment of glioblastoma multiforme (GBM). The use of local gene transfer in the brain has the potential to overcome this delivery barrier by allowing the expression of therapeutic agents directly at the tumor site. In this study, we describe the development of a recombinant adeno-associated (rAAV) serotype 8 vector that encodes an optimized soluble inhibitor, termed sVEGFR1/R2, of vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFGrafting of saphenous vein (SV) conduits into the arterial circulation triggers a number of adaptive pathological changes characterized by progressive medial thickening, neointima formation and accelerated atheroma. Previous studies have shown that modification of vein graft biology is possible by adenovirus (Ad)-mediated gene transfer, although gene expression is transient. Advancement of vascular gene therapy to the clinic is compromised by the lack of safe and efficient vector systems that provide sustained therapeutic gene delivery to the vasculature.
View Article and Find Full Text PDF