Publications by authors named "Satya V.V.N. Kothapalli"

The purpose of the current study was to introduce a Deep learning-based Accelerated and Noise-Suppressed Estimation (DANSE) method for reconstructing quantitative maps of biological tissue cellular-specific, R2t*, and hemodynamic-specific, R2', metrics of quantitative gradient-recalled echo (qGRE) MRI. The DANSE method adapts a supervised learning paradigm to train a convolutional neural network for robust estimation of R2t* and R2' maps with significantly reduced sensitivity to noise and the adverse effects of macroscopic (B ) magnetic field inhomogeneities directly from the gradient-recalled echo (GRE) magnitude images. The R2t* and R2' maps for training were generated by means of a voxel-by-voxel fitting of a previously developed biophysical quantitative qGRE model accounting for tissue, hemodynamic, and B -inhomogeneities contributions to multigradient-echo GRE signal using a nonlinear least squares (NLLS) algorithm.

View Article and Find Full Text PDF

Purpose: To introduce two novel learning-based motion artifact removal networks (LEARN) for the estimation of quantitative motion- and -inhomogeneity-corrected maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) MRI data.

Methods: We train two convolutional neural networks (CNNs) to correct motion artifacts for high-quality estimation of quantitative -inhomogeneity-corrected maps from mGRE sequences. The first CNN, LEARN-IMG, performs motion correction on complex mGRE images, to enable the subsequent computation of high-quality motion-free quantitative (and any other mGRE-enabled) maps using the standard voxel-wise analysis or machine learning-based analysis.

View Article and Find Full Text PDF

Background: Currently, brain tissue atrophy serves as an in vivo MRI biomarker of neurodegeneration in Alzheimer's disease (AD). However, postmortem histopathological studies show that neuronal loss in AD exceeds volumetric loss of tissue and that loss of memory in AD begins when neurons and synapses are lost. Therefore, in vivo detection of neuronal loss prior to detectable atrophy in MRI is essential for early AD diagnosis.

View Article and Find Full Text PDF

Non-heme iron is an important element supporting the structure and functioning of biological tissues. Imbalance in non-heme iron can lead to different neurological disorders. Several MRI approaches have been developed for iron quantification relying either on the relaxation properties of MRI signal or measuring tissue magnetic susceptibility.

View Article and Find Full Text PDF

Purpose: To introduce a novel deep learning method for Robust and Accelerated Reconstruction (RoAR) of quantitative and B0-inhomogeneity-corrected maps from multi-gradient recalled echo (mGRE) MRI data.

Methods: RoAR trains a convolutional neural network (CNN) to generate quantitative maps free from field inhomogeneity artifacts by adopting a self-supervised learning strategy given (a) mGRE magnitude images, (b) the biophysical model describing mGRE signal decay, and (c) preliminary-evaluated F-function accounting for contribution of macroscopic B0 field inhomogeneities. Importantly, no ground-truth images are required and F-function is only needed during RoAR training but not application.

View Article and Find Full Text PDF

Background: With the expanding applications of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU), there is an urgent need for a convenient, reliable, and fast acoustic pressure field measurement method to aid treatment protocol design, ensure consistent and safe operation of the transducer, and facilitate regulatory approval of new techniques. Herein, we report a method for acoustic pressure field characterization of MR-HIFU systems with multi-element phased array transducers. This method integrates fiber-optic hydrophone measurements and electronic steering of the ultrasound beam with MRI-assisted HIFU focus alignment to the fiber tip.

View Article and Find Full Text PDF

The goal of this study was to establish the feasibility of integrating focused ultrasound (FUS)-mediated delivery of Cu-integrated gold nanoclusters (Cu-AuNCs) to the pons for in vivo quantification of the nanocluster brain uptake using positron emission tomography (PET) imaging. FUS was targeted at the pons for the blood-brain barrier (BBB) disruption in the presence of systemically injected microbubbles, followed by the intravenous injection of Cu-AuNCs. The spatiotemporal distribution of the Cu-AuNCs in the brain was quantified using in vivo microPET/CT imaging at different time points post injection.

View Article and Find Full Text PDF

Purpose: Since mild hyperthermia therapy (MHT) requires maintaining the temperature within a narrow window (e.g. 40-43 °C) for an extended duration (up to 1 h), accurate and precise temperature measurements are essential for ensuring safe and effective treatment.

View Article and Find Full Text PDF

Purpose: With the expanding clinical application of magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU), acoustic field characterization of MR-HIFU systems is needed for facilitating regulatory approval and ensuring consistent and safe power output of HIFU transducers. However, the established acoustic field measurement techniques typically use equipment that cannot be used in a magnetic resonance imaging (MRI) suite, thus posing a challenge to the development and execution of HIFU acoustic field characterization techniques. In this study, we developed and characterized a technique for HIFU acoustic field calibration within the MRI magnet bore, and validated the technique with standard hydrophone measurements outside of the MRI suite.

View Article and Find Full Text PDF

Purpose: High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized.

View Article and Find Full Text PDF

The objective of this paper is to explore the trajectory motion of microsize (typically smaller than a red blood cell) encapsulated polymer-shelled gas bubbles propelled by radiation force in an acoustic standing-wave field and to compare the corresponding movements of solid polymer microbeads. The experimental setup consists of a microfluidic chip coupled to a piezoelectric crystal (PZT) with a resonance frequency of about 2.8MHz.

View Article and Find Full Text PDF

This work describes the fracturing mechanism of air-filled microbubbles (MBs) encapsulated by a cross-linked poly(vinyl alcohol) (PVA) shell. The radial oscillation and fracturing events following the ultrasound exposure were visualized with an ultrahigh-speed camera, and backscattered timedomain signals were acquired with the acoustic setup specific for harmonic detection. No evidence of gas emerging from defects in the shell with the arrival of the first insonation burst was found.

View Article and Find Full Text PDF

Combinations of microbubbles (MBs) and superparamagnetic iron oxide nanoparticles (SPIONs) are used to fabricate dual contrast agents for ultrasound and MRI. This study examines the viscoelastic and oscillation characteristics of two MB types that are manufactured with SPIONs and either anchored chemically on the surface (MBs-chem) or physically embedded (MBs-phys) into a polymer shell. A linearized Church model was employed to simultaneously fit attenuation coefficients and phase velocity spectra that were acquired experimentally.

View Article and Find Full Text PDF

Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs).

View Article and Find Full Text PDF

The combination of superparamagnetic iron oxide nanoparticles with polymeric air-filled microbubbles is used to produce two types of multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. In this paper, the characterization of the acoustic properties (backscattered power, fracturing pressure, attenuation and dispersion of the ultrasonic wave) and ultrasound imaging of the two types of magnetic microbubbles are presented.

View Article and Find Full Text PDF

Microbubbles (MBs) are commonly used as injectable ultrasound contrast agent (UCA) in modern ultrasonography. Polymer-shelled UCAs present additional potentialities with respect to marketed lipid-shelled UCAs. They are more robust; that is, they have longer shelf and circulation life, and surface modifications are quite easily accomplished to obtain enhanced targeting and local drug delivery.

View Article and Find Full Text PDF