Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2024
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RI) was extracted and purified.
View Article and Find Full Text PDFBackground: D-Allulose is an ultra-low calorie sugar of multifarious health benefits, including anti-diabetic and anti-obesity potential. D-Allulose 3-epimerase family enzymes catalyze biosynthesis of D-allulose via epimerization of D-fructose.
Results: A novel D-allulose 3-epimerase (DaeB) was cloned from a plant probiotic strain, Bacillus sp.
A novel d-allulose 3-epimerase gene () has been identified from the metagenomic resource of a hot-water reservoir. The enzyme epimerizes d-fructose into d-allulose, a functional sugar of rare abundance in nature. The metagenomic DNA fragment was cloned and expressed in The purified recombinant protein (DaeM) was found to be metal dependent (Co or Mn).
View Article and Find Full Text PDFThe study investigated an integrated bioprocessing of raw and by-products from sugarcane and dairy industries for production of non-digestible prebiotic and functional ingredients. The low-priced feedstock, whey, molasses, table sugar, jaggery, etc., were subjected to transglucosylation reactions catalyzed by dextransucrase from Leuconostoc mesenteroides MTCC 10508.
View Article and Find Full Text PDFIn this work, the sugar industry by-product cane molasses was investigated as feedstock for acceptor reactions by dextransucrase from Leuconostoc mesenteroides MTCC 10508, leading to the biosynthesis of oligosaccharides. The starch industry corn fiber residue was used as a source for acceptor molecules, maltose, in the reaction. Production of approximately 124g oligosaccharides (DP3-DP6) per kg of fresh molasses was achieved.
View Article and Find Full Text PDFThe aim of the present work was to improve stability of d-psicose 3-epimerase and biotransformation of fruit and vegetable residues for d-psicose production. The study established that N-terminal fusion of a yeast homolog of SUMO protein - Smt3 - can confer elevated optimal temperature and improved operational stability to d-psicose 3-epimerase. The Smt3-d-psicose 3-epimerase conjugate system exhibited relatively better catalytic efficiency, and improved productivity in terms of space-time yields of about 8.
View Article and Find Full Text PDF