As the medium for intravitreal drug delivery, the vitreous body can significantly influence drug delivery because of various possible liquefaction geometries. This work innovatively proposes a varying-porosity approach that is capable of solving the pressure and velocity fields in the heterogeneous vitreous with randomly-shaped liquefaction geometry, validated with a finite difference model. Doing so enables patient-specific treatment for intravitreal drug delivery and can significantly improve treatment efficacy.
View Article and Find Full Text PDFThe purpose of this study is to systematically examine the basic fluid dynamics associated with a fully liquid region within a porous material. This work has come about as a result of our investigation on the ocular fluid dynamics and transport process in a partially liquefied vitreous humor. The liquid is modeled as a sphere with Stokes flow while the surrounding infinite porous region is described by Brinkman flow.
View Article and Find Full Text PDFThis study uses the singular perturbation method to analyze the streaming flow around a pulsating bubble at the velocity antinode of a standing wave. The bubble radially and laterally oscillates with small nondimensional amplitudes of ε` and ε, respectively. The momentum equation is expanded using ε.
View Article and Find Full Text PDFThe purpose of this study is to investigate the effect of partial liquefaction (due to ageing) of the vitreous humor on the transport of ocular drugs. In our model, the gel part of the vitreous is treated as a Darcy-type porous medium. A spherical region within the porous part of vitreous is in a liquid state which, for computational purposes, is also treated as a porous medium but with a much higher permeability.
View Article and Find Full Text PDFSustained ocular drug delivery systems are necessary for patients needing regular drug therapy since frequent injection is painful, undesirable, and risky. One type of sustained-release systems includes pellets loaded with the drug, encapsulated in a porous shell that can be injected into the vitreous humor. There the released drug diffuses while the physiological flow of water provides the convective transport.
View Article and Find Full Text PDFIn order to measure the effective diffusion coefficient of Bevacizumab (Avastin, Genentech) in the vitreous humor, a new technique is developed based on the "contour method" and in vivo optical coherence tomography measurements. After injection of Bevacizumab-fluorescein conjugated compound solution into the rabbit eye, the contours of drug concentration distribution at the subsurface of injection were tracked over time. The 2D contours were extrapolated to 3D contours using reasonable assumptions and a numerically integrated analytical model was developed for the theoretical contours for the irregularly shaped drug distribution in the experimental result.
View Article and Find Full Text PDFThe hydraulic conductivity of the vitreous humor has been measured for the bovine eye. The experiment was carried out by placing it within upright cylindrical chamber, open at both ends, and letting its liquid content drain out of the bottom opening by gravity, through a 20m nylon mesh filter. Additional negative pressure was provided at the exit by a hanging drainage tube.
View Article and Find Full Text PDFIn relation to intravitreal drug delivery, predictive mathematical models for drug transport are being developed, and to effectively implement these for retinal delivery, the information on biophysical properties of various ocular tissues is fundamentally important. It is therefore necessary to accurately measure the diffusion coefficient of drugs and drug surrogates in the vitreous humor. In this review, we present the studies conducted by various researchers on such measurements over the last several decades.
View Article and Find Full Text PDFThe purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk.
View Article and Find Full Text PDF