The parasitic oomycete Aphanomyces astaci is the causative agent of crayfish plague, a devastating disease for European freshwater crayfish. Species specific quantitative real-time PCR (qPCR) can offer rapid detection of the pathogen. However, the well established A.
View Article and Find Full Text PDFOomycete infections in farmed fish are one of the most significant disease issues in salmonid aquaculture worldwide. In the present study, Saprolegnia spp. in different farmed fish species in Finland were identified, and the molecular epidemiology of especially Saprolegnia parasitica was examined.
View Article and Find Full Text PDFinduces heavy mortality in aquaculture. The detection of is often time consuming and uncertain, making it difficult to manage the disease. We validated a previously published real-time quantitative PCR (qPCR) assay to confirm the presence of in fish and in water using environmental DNA (eDNA) quantification.
View Article and Find Full Text PDFThe relatively unknown genus Iodobacter sp. has been repeatedly isolated from skin ulcers and saprolegniosis on freshwater fish in Finland, especially farmed salmonids. Genetic characterization verified that all 23 bacterial isolates studied here belonged to the species Iodobacter limnosediminis, previously undescribed from the fish microbiota.
View Article and Find Full Text PDFThe causative agent of crayfish plague, Aphanomyces astaci (Saprolegniales, Oomycota), is one of the 100 world's worst invasive alien species and represents a major threat to freshwater crayfish species worldwide. A better understanding of the biology and epidemiology of A. astaci relies on the application of efficient tools to detect the pathogen and assess its genetic diversity.
View Article and Find Full Text PDFSeveral isolates of an unknown oomycete resembling the genus Aphanomyces were obtained into laboratory culture from samples of noble crayfish (Astacus astacus) in 2016-2017. The crayfish were kept in cages in connection with a study on an eventually persistent crayfish plague infection in a small Finnish lake, following an acute episode of the disease in 2010. Despite the close resemblance of the isolates to the causative agent of crayfish plague, Aphanomyces astaci, and the positive results obtained in OIE recommended A.
View Article and Find Full Text PDFInfectious pancreatic necrosis (IPN) is a contagious viral disease of fish that causes economic losses in aquaculture worldwide. In Finland, IPN virus (IPNV) has been isolated since 1987 from adult fish showing no signs of clinical disease at fish farms located in the coastal areas of the Baltic Sea. The inland area of Finland, however, remained free of IPN until 2012, when fish on several rainbow trout farms were diagnosed IPNV-positive.
View Article and Find Full Text PDFEuropean crayfish are sensitive to the crayfish plague pathogen, Aphanomyces astaci, carried by North American crayfish species due to their less effective immune defence mechanisms against this disease. During a controlled infection experiment with a susceptible crayfish species Astacus astacus using three A. astaci strains (representing genotype groups A, B, and E), we investigated variation in their virulence and in crayfish immune defence indicators (haemocyte density, phenoloxidase activity, and production of reactive oxygen species).
View Article and Find Full Text PDFAphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A.
View Article and Find Full Text PDFTwo Finnish fish farms experienced elevated mortality rates in farmed grayling Thymallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Virological investigation detected an infection with an unknown rhabdovirus.
View Article and Find Full Text PDFThe specialized crayfish parasite Aphanomyces astaci causes the devastating crayfish plague in European crayfish. Even though A. astaci sporulation has been thoroughly studied under pure culture conditions, little is known about the sporulation dynamic from its live host.
View Article and Find Full Text PDFThe oomycete Aphanomyces astaci causes mass mortalities of European crayfish. Different species of North American crayfish, original hosts of this parasite, seem to carry different strains of A. astaci.
View Article and Find Full Text PDF