This study aims to predict emotions using biosignals collected via wrist-worn sensor and evaluate the performance of different prediction models. Two dimensions of emotions were considered: valence and arousal. The data collected by the sensor were used in conjunction with target values obtained from questionnaires.
View Article and Find Full Text PDFPurpose: To gain an understanding of the heterogeneous group of type 2 diabetes (T2D) patients, we aimed to identify patients with the homogenous long-term HbA1c trajectories and to predict the trajectory membership for each patient using explainable machine learning methods and different clinical-, treatment-, and socio-economic-related predictors.
Patients And Methods: Electronic health records data covering primary and specialized healthcare on 9631 patients having T2D diagnosis were extracted from the North Karelia region, Finland. Six-year HbA1c trajectories were examined with growth mixture models.
Analyzing clinical data comes with many challenges. Medical expertise combined with statistical and programming knowledge must go hand-in-hand when applying data mining methods on clinical datasets. This work aims at bridging the gap between clinical expertise and computer science knowledge by providing an application for clinical data analysis with no requirement for statistical programming knowledge.
View Article and Find Full Text PDFBackground: Multimodal wearable technologies have brought forward wide possibilities in human activity recognition, and more specifically personalized monitoring of eating habits. The emerging challenge now is the selection of most discriminative information from high-dimensional data collected from multiple sources. The available fusion algorithms with their complex structure are poorly adopted to the computationally constrained environment which requires integrating information directly at the source.
View Article and Find Full Text PDFAdvances in technology and data analysis provide rich opportunities for developing intelligent environments assisting their inhabitants, so-called smart environments or smart spaces. Enhanced with technology, sensors, user interfaces, and various applications, such smart spaces are capable of recognizing users and situations they are in, react accordingly, e.g.
View Article and Find Full Text PDF