With the spread of resistance to long-established insecticides targeting malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Ag1, Ag2, Ag3, Ag8 and Ag1 subunits in oocytes, the orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Ag2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Ag3 subunit increases it.
View Article and Find Full Text PDFInsecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae.
View Article and Find Full Text PDFHundreds of millions of people worldwide are infected with the whipworm Trichuris trichiura. Novel treatments are urgently needed as current drugs, such as albendazole, have relatively low efficacy. We have investigated whether drugs approved for other human diseases could be repurposed as novel anti-whipworm drugs.
View Article and Find Full Text PDFThe anthelmintic paraherquamide A acts selectively on the nematode L-type nicotinic acetylcholine receptors (nAChRs), but the mechanism of its selectivity is unknown. This study targeted the basis of paraherquamide A selectivity by determining an X-ray crystal structure of the acetylcholine binding protein (AChBP), a surrogate nAChR ligand-binding domain, complexed with the compound and by measuring its actions on wild-type and mutant nematodes and functionally expressed nAChRs. Paraherquamide A showed a higher efficacy for the levamisole-sensitive [L-type (UNC-38/UNC-29/UNC-63/LEV-1/LEV-8)] nAChR than the nicotine-sensitive [N-type (ACR-16)] nAChR, a result consistent with in vivo studies on wild-type worms and worms with mutations in subunits of these two classes of receptors.
View Article and Find Full Text PDFNeonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored.
View Article and Find Full Text PDFInsect-borne diseases of humans, animals and plants can be devastating. The direct damage to crops by insect and nematode pests can also severely reduce crop yields and threaten harvests. Parasitic nematodes can impair human health and the health of farm livestock.
View Article and Find Full Text PDFMosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility.
View Article and Find Full Text PDFPyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides.
View Article and Find Full Text PDFNine hundred million people are infected with the soil-transmitted helminths (roundworm), hookworm, and (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of Here, we report a systematic investigation of the structure-activity relationship of the anthelmintic activity of DHB compounds.
View Article and Find Full Text PDFThe conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy.
View Article and Find Full Text PDFThe difficulty of achieving robust functional expression of insect nicotinic acetylcholine receptors (nAChRs) has hampered our understanding of these important molecular targets of globally deployed neonicotinoid insecticides at a time when concerns have grown regarding the toxicity of this chemotype to insect pollinators. We show that thioredoxin-related transmembrane protein 3 (TMX3) is essential to enable robust expression in oocytes of honeybee () and bumblebee () as well as fruit fly () nAChR heteromers targeted by neonicotinoids and not hitherto robustly expressed. This has enabled the characterization of picomolar target site actions of neonicotinoids, findings important in understanding their toxicity.
View Article and Find Full Text PDFHelminths, including cestodes, nematodes and trematodes, are a huge global health burden, infecting hundreds of millions of people. In many cases, existing drugs such as benzimidazoles, diethylcarbamazine, ivermectin and praziquantel are insufficiently efficacious, contraindicated in some populations, or at risk of the development of resistance, thereby impeding progress towards World Health Organization goals to control or eliminate these neglected tropical diseases. However, there has been limited recent progress in developing new drugs for these diseases due to lack of commercial attractiveness, leading to the introduction of novel, more efficient models for drug innovation that attempt to reduce the cost of research and development.
View Article and Find Full Text PDFTrichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine.
View Article and Find Full Text PDFThe harlequin ladybird, Harmonia axyridis (H. axyridis), possesses a strong chemical defence that has contributed to its invasive success. Ladybird beetle defensive chemicals, secreted in response to stress and also found on the coating of laid eggs, are rich in alkaloids that are thought to be responsible for this beetle's toxicity to other species.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2020
Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees.
View Article and Find Full Text PDFThe availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β-microglobulin (D76N β-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein.
View Article and Find Full Text PDFA possible role for calcium signalling in the autosomal dominant form of dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB), has been proposed, which may point towards a mechanism by which cells could sense and respond to the accumulation of mutant serpin polymers in the endoplasmic reticulum (ER). We therefore explored possible defects in Ca-signalling, which may contribute to the pathology associated with another serpinopathy, α-antitrypsin (AAT) deficiency. Using CHO K1 cell lines stably expressing a wild type human AAT (MAAT) and a disease-causing polymer-forming variant (ZAAT) and the truncated variant (NHK AAT), we measured basal intracellular free Ca, its responses to thapsigargin (TG), an ER Ca-ATPase blocker, and store-operated Ca-entry (SOCE).
View Article and Find Full Text PDFNeonicotinoid insecticides interact with the orthosteric sites of nicotinic acetylcholine receptors (nAChRs) formed at the interfaces of (a) two adjacent α subunits and (b) α and non-α subunits. However, little is known of the detailed contributions of these two orthosteric sites to neonicotinoid actions. We therefore applied voltage-clamp electrophysiology to the Dα1/chicken β2 hybrid nAChR expressed in Xenopus laevis oocytes to explore the agonist actions of imidacloprid and thiacloprid on wild type receptors and following binding site mutations.
View Article and Find Full Text PDFCurr Opin Insect Sci
December 2018
Insect toxins comprise a diverse array of chemicals ranging from small molecules, polyamines and peptide toxins. Many target nervous system and neuromuscular ion channels and so rapidly affect the behaviour of animals to which the toxin is applied or injected. Other modes of action have also been identified.
View Article and Find Full Text PDFFemale Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science.
View Article and Find Full Text PDFThe human whipworm Trichuris trichiura is a parasite that infects around 500 million people globally, with consequences including damage to physical growth and educational performance. Current drugs such as mebendazole have a notable lack of efficacy against whipworm, compared to other soil-transmitted helminths. Mass drug administration programs are therefore unlikely to achieve eradication and new treatments for trichuriasis are desperately needed.
View Article and Find Full Text PDFA novel L-glutamate-gated anion channel (IscaGluCl1) has been cloned from the black-legged tick, Ixodes scapularis, which transmits multiple pathogens including the agents of Lyme disease and human granulocytic anaplasmosis. When mRNA encoding IscaGluCl1 was expressed in Xenopus laevis oocytes, we detected robust 50-400 nA currents in response to 100 μM L-glutamate. Responses to L-glutamate were concentration-dependent (pEC 3.
View Article and Find Full Text PDFParasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited and parasite resistance to the existing anthelmintic compounds is a global threat.
View Article and Find Full Text PDF