Publications by authors named "Satrajit S Ghosh"

Article Synopsis
  • Biomedical research is increasingly integrating artificial intelligence (AI) and machine learning (ML) to tackle complex challenges, necessitating a focus on ethical and explainable AI (XAI) due to the complexities of deep learning methods.
  • The NIH's Bridge2AI program is working on creating new flagship datasets aimed at enhancing AI/ML applications in biomedicine while establishing best practices, tools, standards, and criteria for assessing the data's AI readiness, including legal and ethical considerations.
  • The article outlines foundational criteria developed by the NIH Bridge2AI Standards Working Group to ensure the scientific rigor and ethical use of AI in biomedical research, emphasizing the need for ongoing adaptation as the field evolves.
View Article and Find Full Text PDF
Article Synopsis
  • The Brain Imaging Data Structure (BIDS) is a community-created standard for organizing neuroscience data and metadata, helping researchers manage various modalities efficiently.
  • The paper discusses the evolution of BIDS, including the guiding principles, extension mechanisms, and challenges faced during its development.
  • It also highlights key lessons learned from the BIDS project, aiming to inspire and inform researchers in other fields about effective data organization practices.
View Article and Find Full Text PDF

Deep learning has proven highly effective in various medical imaging scenarios, yet the lack of an efficient distribution platform hinders developers from sharing models with end-users. Here, we describe brainchop, a fully functional web application that allows users to apply deep learning models developed with Python to local neuroimaging data from within their browser. While training artificial intelligence models is computationally expensive, applying existing models to neuroimaging data can be very fast; brainchop harnesses the end user's graphics card such that brain extraction, tissue segmentation, and regional parcellation require only seconds and avoids privacy issues that impact cloud-based solutions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of one year of medical cannabis use on brain function, specifically focusing on areas tied to working memory, reward, and inhibitory control.
  • Conducted in the Boston area, the cohort study involved individuals aged 18-65 who sought medical cannabis cards for conditions like anxiety, depression, pain, or insomnia.
  • Results showed brain imaging performed before and after a year of cannabis use did not reveal significant changes in brain activation related to the cognitive tasks evaluated.
View Article and Find Full Text PDF

Objective: Three leading neurobiological hypotheses about autism spectrum disorder (ASD) propose underconnectivity between brain regions, atypical function of the amygdala, and generally higher variability between individuals with ASD than between neurotypical individuals. Past work has often failed to generalize, because of small sample sizes, unquantified data quality, and analytic flexibility. This study addressed these limitations while testing the above three hypotheses, applied to amygdala functional connectivity.

View Article and Find Full Text PDF

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain.

View Article and Find Full Text PDF

Detecting voice disorders from voice recordings could allow for frequent, remote, and low-cost screening before costly clinical visits and a more invasive laryngoscopy examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice recordings using machine learning, to identify which acoustic variables were important for prediction to increase trust, and to determine model performance relative to clinician performance. Patients with confirmed UVFP through endoscopic examination (N = 77) and controls with normal voices matched for age and sex (N = 77) were included.

View Article and Find Full Text PDF

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.

View Article and Find Full Text PDF
Article Synopsis
  • The Brain Imaging Data Structure (BIDS) is a collaborative standard designed to organize various neuroscience data and metadata.
  • The paper details the history, principles, and mechanisms behind the development and expansion of BIDS, alongside the challenges it faces as it evolves.
  • It also shares lessons learned from the project to help researchers in other fields apply similar successful strategies.
View Article and Find Full Text PDF

Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Structure (BIDS) - BIDS Apps - have provided a substantial advance.

View Article and Find Full Text PDF

The biomedical research community is motivated to share and reuse data from studies and projects by funding agencies and publishers. Effectively combining and reusing neuroimaging data from publicly available datasets, requires the capability to query across datasets in order to identify cohorts that match both neuroimaging and clinical/behavioral data criteria. Critical barriers to operationalizing such queries include, in part, the broad use of undefined study variables with limited or no annotations that make it difficult to understand the data available without significant interaction with the original authors.

View Article and Find Full Text PDF

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process.

View Article and Find Full Text PDF

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization.

View Article and Find Full Text PDF

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.

View Article and Find Full Text PDF

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process.

View Article and Find Full Text PDF

Official tests for COVID-19 are time consuming, costly, can produce high false negatives, use up vital chemicals and may violate social distancing laws. Therefore, a fast and reliable additional solution using recordings of cough, breathing and speech data for preliminary screening may help alleviate these issues. This scoping review explores how Artificial Intelligence (AI) technology aims to detect COVID-19 disease by using cough, breathing and speech recordings, as reported in the literature.

View Article and Find Full Text PDF

Reference anatomies of the brain ('templates') and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models.

View Article and Find Full Text PDF

Early identification of bipolar disorder may provide appropriate support and treatment, however there is no current evidence for statistically predicting whether a child will develop bipolar disorder. Machine learning methods offer an opportunity for developing empirically-based predictors of bipolar disorder. This study examined whether bipolar disorder can be predicted using clinical data and machine learning algorithms.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets.

View Article and Find Full Text PDF

The Neuroimaging Data Model (NIDM) is a series of specifications for describing all aspects of the neuroimaging data lifecycle from raw data to analyses and provenance. NIDM uses community-driven terminologies along with unambiguous data dictionaries within a Resource Description Framework (RDF) document to describe data and metadata for integration and query. Data from different studies, using locally defined variable names, can be retrieved by linking them to higher-order concepts from established ontologies and terminologies.

View Article and Find Full Text PDF

The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets.

View Article and Find Full Text PDF

Inferior colliculus (IC) is an obligatory station along the ascending auditory pathway that also has a high degree of top-down convergence efferent pathways, making it a major computational hub. Animal models have attributed critical roles for the IC in in mediating auditory plasticity, egocentric selection, and noise exclusion. IC contains multiple functionally distinct subdivisions.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses the importance of standardizing data in neuroscience research to improve its quality and usability.
  • It highlights the role of international collaboration and organizations like the INCF in promoting the FAIR principles (Findable, Accessible, Interoperable, Reusable) for neuroscience data.
  • The authors emphasize that the lack of standards is a significant barrier to effectively sharing and reusing multimodal and multiscale neuroscience data.
View Article and Find Full Text PDF