Publications by authors named "Satoshi Teraji"

The beat in physical systems is a transparent and well-understood phenomenon. It may occur in forced oscillatory systems and as a result of the interference of two waves of slightly different frequencies. However, in chemical systems, the realization of the latter type of the beat phenomenon has been lacking.

View Article and Find Full Text PDF

The development of methods to pattern nanocrystals with different sizes and shapes remains a challenge. In this study, we demonstrate a unique class of bottom-up approaches to assemble nanocrystals into patterns. Our approach for patterning nanocrystals focuses on the utilization and control of the chemical reaction of solvents surrounding nanocrystals.

View Article and Find Full Text PDF

Simple, green, and energy-efficient methods for preparing electroactive materials used to generate and store renewable energy are important for a sustainable future. In this study, we showed that noble and certain non-noble metal nanoparticles can be deposited on graphite without the aid of any reducing agent. This method of reducing metal ions to metal nanoparticles by graphite involves only one step (i.

View Article and Find Full Text PDF

In this study, we demonstrate that vertically aligned gold nanowire array electrodes provide rapid ion and electron transport to the electrode-electrolyte interface. The charge-transport properties of the nanowire electrodes were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy under a constant-volume device configuration. The total charge stored in the corresponding devices increases monotonically with the length of the nanowires owing to the concomitant increase in the electroactive real surface area of the electrode.

View Article and Find Full Text PDF

Functionalized nanoparticles (NPs) can penetrate into living cells and vesicles, opening up an extensive range of novel directions. For example, NPs are intensively employed in targeted drug delivery and biomedical imaging. However, the real-time kinetics and dynamics of NP-living cell interactions remained uncovered.

View Article and Find Full Text PDF

Nanostructured electrodes are at the forefront of advanced materials research, and have been studied extensively in the context of their potential applications in energy storage and conversion. Here, we report on the properties of core-shell (gold-polypyrrole) hybrid nanowires and their suitability as electrodes in electrochemical capacitors and as electrocatalysts. In general, the specific capacitance of electrochemical capacitors can be increased by faradaic reactions, but their charge transfer resistance impedes charge transport, decreasing the capacitance with increasing charge/discharge rate.

View Article and Find Full Text PDF