The crystal structures of a wild-type and a mutant PCS, a novel plant type III polyketide synthase from a medicinal plant, Aloe arborescens, were solved at 1.6 A resolution. The crystal structures revealed that the pentaketide-producing wild-type and the octaketide-producing M207G mutant shared almost the same overall folding, and that the large-to-small substitution dramatically increases the volume of the polyketide-elongation tunnel by opening a gate to two hidden pockets behind the active site of the enzyme.
View Article and Find Full Text PDFPentaketide chromone synthase (PCS) from Aloe arborescens is a novel plant-specific type III polyketide synthase (PKS) that produces 5,7-dihydroxy-2-methylchromone from five molecules of malonyl-CoA. On the basis of the crystal structures of wild-type and M207G mutant PCS, the F80A/Y82A/M207G triple mutant was constructed and shown to produce an unnatural novel nonaketide naphthopyrone by sequential condensations of nine molecules of malonyl-CoA. This is the first demonstration of the formation of a nonaketide by the structurally simple type III PKS.
View Article and Find Full Text PDFThe chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones).
View Article and Find Full Text PDFA novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2004
Recombinant chalcone synthase (CHS) from Scutellaria baicalensis accepted cinnamoyl diketide-NAC and cinnamoyl-NAC as a substrate, and carried out sequential condensations with malonyl-CoA to produce 2',4',6'-trihydroxychalcone. Steady-state kinetic analysis revealed that the CHS accepted the diketide-NAC with less efficiency, while cinnamoyl-NAC primed the enzyme reaction almost as efficiently as cinnamoyl-CoA. On the other hand, it was for the first time demonstrated that the diketide-NAC was also a substrate for recombinant polyketide reductase (PKR) from Glycyrrhiza echinata, and converted to the corresponding beta-ketohemithioester.
View Article and Find Full Text PDFA cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes.
View Article and Find Full Text PDF