Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task.
View Article and Find Full Text PDFThe hippocampus and entorhinal cortex are deeply involved in learning and memory. However, little is known how ongoing events are processed in the hippocampal-entorhinal circuit. By recording from head-fixed rats during action-reward learning, here we show that the action and reward events are represented differently in the hippocampal CA1 region and lateral entorhinal cortex (LEC).
View Article and Find Full Text PDFFront Neurosci
November 2019
According to a widely held view, the decision-making process can be conceptualized as a two-step process: "object choice," which does not include physical actions, followed by "movement choice," in which action is executed to obtain the object. Accumulating evidence in the field of decision neuroscience suggests that the cortico-basal ganglia circuits play a crucial role in decision-making. However, the underlying mechanisms of the object and movement choices remain poorly understood, mainly because the two processes occur simultaneously in most experiments.
View Article and Find Full Text PDFIn the parkinsonian state, the motor cortex and basal ganglia (BG) undergo dynamic remodeling of movement representation. One such change is the loss of the normal contralateral lateralized activity pattern. The increase in the number of movement-related neurons responding to ipsilateral or bilateral limb movements may cause motor problems, including impaired balance, reduced bimanual coordination, and abnormal mirror movements.
View Article and Find Full Text PDFThe basal ganglia play key roles in adaptive behaviors guided by reward and punishment. However, despite accumulating knowledge, few studies have tested how heterogeneous signals in the basal ganglia are organized and coordinated for goal-directed behavior. In this study, we investigated neuronal signals of the direct and indirect pathways of the basal ganglia as rats performed a lever push/pull task for a probabilistic reward.
View Article and Find Full Text PDFAnimals can suppress their behavioral response in advance according to changes in environmental context (proactive inhibition: delaying the start of response), a process in which several cortical areas may participate. However, it remains unclear how this process is adaptively regulated according to contextual changes on different timescales. To address the issue, we used an improved stop-signal task paradigm to behaviorally and electrophysiologically characterize the temporal aspect of proactive inhibition in head-fixed rats.
View Article and Find Full Text PDFTheoretical simulations suggest that spike rate is regulated by varying both membrane potential and its fluctuation. We investigated whether membrane potential fluctuation functionally changes in motor cortex and striatum neurons during discrete forelimb movements and pauses, or at rest, using whole-cell recording in task-performing rats. Membrane potential fluctuation was diminished by task performance, but maintained overall in the alpha/beta and gamma bands during forelimb movements and pauses.
View Article and Find Full Text PDF