We have recently developed a Corynebacterium glutamicum strain that generates NADPH via the glycolytic pathway by replacing endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GapA) with a nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) from Streptococcus mutans. Strain RE2, a suppressor mutant spontaneously isolated for its improved growth on glucose from the engineered strain, was proven to be a high-potential host for l-lysine production (Takeno et al., 2010).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2015
In Corynebacterium glutamicum, the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) has long been the only known glucose uptake system, but we recently found suppressor mutants emerging from a PTS-negative strain of C. glutamicum ATCC 31833 on glucose agar plates, and identified two alternative potential glucose uptake systems, the myo-inositol transporters encoded by iolT1 and iolT2. The expression of either gene renders the PTS-negative strain WTΔptsH capable of growing on glucose.
View Article and Find Full Text PDFArachidonic acid (ARA) is a polyunsaturated fatty acid (PUFA) and an essential component of membrane lipids. However, the PUFA synthase required for ARA biosynthesis has not been identified in any organism. To identify the PUFA synthase producing ARA, we determined the draft genome sequence of the marine bacterium Aureispira marina, which produces a high level of ARA, and found a gene cluster encoding a putative PUFA synthase for ARA production.
View Article and Find Full Text PDFEnzymatic regio- and stereoselective hydroxylation are valuable for the production of hydroxylated chiral ingredients. Proline hydroxylases are representative members of the nonheme Fe(2+)/α-ketoglutarate-dependent dioxygenase family. These enzymes catalyze the conversion of L-proline into hydroxy-L-prolines (Hyps).
View Article and Find Full Text PDFAmino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine).
View Article and Find Full Text PDFAppl Environ Microbiol
November 2013
To date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway of Corynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background.
View Article and Find Full Text PDFTo develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene.
View Article and Find Full Text PDFL-Homophenylalanine (L-Hph) is a useful chiral building block for synthesis of several drugs, including angiotensin-converting enzyme inhibitors and the novel proteasome inhibitor carfilzomib. While the chemoenzymatic route of synthesis is fully developed, we investigated microbial production of L-Hph to explore the possibility of a more efficient and sustainable approach to L-Hph production. We hypothesized that L-Hph is synthesized from L-Phe via a mechanism homologous to 3-methyl-2-oxobutanoic acid conversion to 4-methyl-2-oxopentanoic acid during leucine biosynthesis.
View Article and Find Full Text PDFThe Cgl1427 gene was previously found to be relevant to the microaerobic growth of Corynebacterium glutamicum (Ikeda et al. Biosci Biotechnol Biochem 73:2806-2808, 2009). In the present work, Cgl1427 was identified as a cytidylate kinase gene (cmk) by homology analysis of its deduced amino acid sequence with that of other bacterial cytidylate kinases (CMP kinases) and on the basis of findings that deletion of Cgl1427 results in loss of CMP kinase activity.
View Article and Find Full Text PDFCorynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose.
View Article and Find Full Text PDFA sufficient supply of NADPH is a critical factor in l-lysine production by Corynebacterium glutamicum. Endogenous NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of C. glutamicum was replaced with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of Streptococcus mutans, which catalyzes the reaction of glyceraldehyde 3-phosphate to 3-phosphoglycerate with the reduction of NADP(+) to NADPH, resulting in the reconstruction of the functional glycolytic pathway.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2009
Mutagenized cell libraries of Corynebacterium glutamicum were screened for mutants that lost the ability to grow under low oxygen concentrations. The resulting high-oxygen-requiring mutants were used to clone wild-type DNA fragments that could complement the phenotype. Sequencing and subcloning analyses identified six genes, Cgl0807, Cgl1102, Cgl0600, Cgl1427, Cgl2857, and Cgl2859, as the genes responsible for complementation.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2009
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
November 2006
Genomic analysis of a classically derived L-lysine-producing mutant, Corynebacterium glutamicum B-6, identified a nonsense mutation in the mqo gene, which encodes malate:quinone oxidoreductase (MQO). The effect of mqo disruption on L-lysine production was investigated in a defined L-lysine producer, C. glutamicum AHP-3, showing approximately 18% increased production.
View Article and Find Full Text PDFWe previously found by transcriptome analysis that global induction of amino acid biosynthetic genes occurs in a classically derived industrial L-lysine producer, Corynebacterium glutamicum B-6. Based on this stringent-like transcriptional profile in strain B-6, we analyzed the relevant mutations from among those identified in the genome of the strain, with special attention to the genes that are involved in amino acid biosynthesis and metabolism. Among these mutations, a Gly-456-->Asp mutation in the 3-isopropylmalate dehydratase large subunit gene (leuC) was defined as a useful mutation.
View Article and Find Full Text PDFBased on the progress in genomics, we have developed a novel approach that employs genomic information to generate an efficient amino acid producer. A comparative genomic analysis of an industrial L-lysine producer with its natural ancestor identified a variety of mutations in genes associated with L-lysine biosynthesis. Among these mutations, we identified two mutations in the relevant terminal pathways as key mutations for L-lysine production, and three mutations in central metabolism that resulted in increased titers.
View Article and Find Full Text PDFToward the elucidation of advanced mechanisms of L-lysine production by Corynebacterium glutamicum, a highly developed industrial strain B-6 was analyzed from the viewpoint of gene expression. Northern blot analysis showed that the lysC gene encoding aspartokinase, the key enzyme of L-lysine biosynthesis, was up-regulated by several folds in strain B-6, while no repression mechanism exists in L-lysine biosynthesis of this bacterium. To analyze the underlying mechanisms of the up-regulation, we compared the transcriptome between strain B-6 and its parental wild-type, finding that not only lysC but also many other amino acid-biosynthetic genes were up-regulated in the producer.
View Article and Find Full Text PDFToward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream pathways, we shifted our target to the pentose phosphate pathway. Comparative genomic analysis for the pathway between a classically derived L-lysine producer and its parental wild-type identified several mutations.
View Article and Find Full Text PDF