Publications by authors named "Satoshi Ishizaka"

It is difficult to establish an analytical criterion to identify the boundaries of quantum correlations, even for the simplest Bell scenario. Here, we briefly reviewed the plausible analytical criterion, and we found a way to confirm the extremal conditions from another direction. For that purpose, we analyzed the Navascués-Pironio-Acín (NPA) hierarchy to study the algebraic structure and found that the problem could not be simplified using the 1+AB level.

View Article and Find Full Text PDF

Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication.

View Article and Find Full Text PDF

We consider a scheme of quantum teleportation where a receiver has multiple (N) output ports and obtains the teleported state by merely selecting one of the N ports according to the outcome of the sender's measurement. We demonstrate that such teleportation is possible by showing an explicit protocol where N pairs of maximally entangled qubits are employed. The optimal measurement performed by a sender is the square-root measurement, and a perfect teleportation fidelity is asymptotically achieved for a large N limit.

View Article and Find Full Text PDF

We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security conditions of a biased coin flip, it does not realize the ideal functionality and, therefore, does not satisfy the demands for universally composable security. Moreover, through a comparison within a small restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip unless it is unbiased on both sides of parties against insensitive cheating.

View Article and Find Full Text PDF

I show that two distant parties can transform pure entangled states to arbitrary pure states by stochastic local operations and classical communication (SLOCC) at the single copy level, if they share bound entangled states. This is the effect of bound entanglement since this entanglement processing is impossible by SLOCC alone. A similar effect of bound entanglement exists in three qubits where two incomparable entangled states of GHZ (Greenberger, Horne, and Zeilinger) and W can be interconverted.

View Article and Find Full Text PDF