In this Letter, a novel mechanism to enhance the magnetoelectric (ME) coupling between electric polarization and magnetism using the dynamic Jahn-Teller (JT) effect is demonstrated. Electric polarization of over 100 μC/m^{2} is induced by the magnetic field owing to the second-order ME effect in the noncentrosymmetric transition metal complex [Mn^{III}(taa)]. This appearance of electric polarization does not require magnetic order in contrast to the linear ME effect in ME multiferroic materials.
View Article and Find Full Text PDFFor the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions.
View Article and Find Full Text PDFRecently, we succeeded in detwinning REBa2Cu3O7 (RE123, RE = rare-earth elements)-coated conductors by annealing under an external uniaxial strain. Using the untwinned RE123 tapes, the uniaxial-strain dependencies of the critical temperature Tc along the a and b crystal axes were investigated over a wide strain region from compression to tension. We found that the strain dependencies of Tc for the a and b axes obey a power law but exhibit opposite slopes.
View Article and Find Full Text PDFHigh-performance Sr0.6K0.4Fe2As2 (Sr-122) tapes have been successfully fabricated using hot pressing (HP) process.
View Article and Find Full Text PDFImproving transport current has been the primary topic for practical application of superconducting wires and tapes. However, the porous nature of powder-in-tube (PIT) processed iron-based tapes is one of the important reasons for low critical current density (Jc) values. In this work, the superconducting core density of ex-situ Sr0.
View Article and Find Full Text PDFFrom the application point of view, large critical current densities J(c) (H) for superconducting wires are required, preferably for magnetic fields higher than 5 T. Here we show that strong c-axis textured Sr(1-x)K(x)Fe(2)As(2) tapes with nearly isotropic transport J(c) were fabricated by an ex-situ powder-in-tube (PIT) process. At 4.
View Article and Find Full Text PDFSuperconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts.
View Article and Find Full Text PDFMagnetic resonance imaging with high static magnetic fields (SMFs) has become widely used for medical imaging purposes because SMFs cause fewer genotoxic side effects than ionizing radiation (IR). However, the effect of exposure to high SMFs on global transcription is little understood. We demonstrate that genes involved in motor activity, actin binding, cell adhesion, and cuticles are transiently and specifically induced following exposure to 3 or 5 T SMF in the experimental model metazoan Caenorhabditis elegans.
View Article and Find Full Text PDF