The BCR::ABL1 oncogene plays a crucial role in the development of chronic myeloid leukemia (CML). Previous studies have investigated the involvement of mitochondrial dynamics in various cancers, revealing potential therapeutic strategies. However, the impact of BCR::ABL1 on mitochondrial dynamics remains unclear.
View Article and Find Full Text PDFAcute liver failure is a serious, life-threatening disease. Although the gut microbiota has been considered to play a role in liver failure, the extent to which it is involved in the pathogenesis of this disease has not been fully elucidated to date. Therefore, we here analyzed the importance of the presence of intestinal microbiota in the pathogenesis of acute liver injury, using D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-treated mice, which is a widely used experimental model of acute liver injury.
View Article and Find Full Text PDFAdenosine monophosphate (AMP)-activated protein kinase (AMPK) is a central kinase involved in energy homeostasis. Increased intracellular AMP levels result in AMPK activation through the binding of AMP to the γ-subunit of AMPK. Recently, we reported that AMP-induced AMPK activation is impaired in the kidneys in chronic kidney disease (CKD) despite an increase in the AMP/ATP ratio.
View Article and Find Full Text PDFSunlight exposure results in an inflammatory reaction of the skin commonly known as sunburn, which increases skin cancer risk. In particular, the ultraviolet B (UVB) component of sunlight induces inflammasome activation in keratinocytes to instigate the cutaneous inflammatory responses. Here, we explore the intracellular machinery that maintains skin homeostasis by suppressing UVB-induced inflammasome activation in human keratinocytes.
View Article and Find Full Text PDFRecent advancements in genome analysis technology have revealed the presence of read-through transcripts in which transcription continues by skipping the polyA signal. We here identified and characterized a new read-through transcript, . With cDNA amplification from THP-1 cells, the product was successfully generated.
View Article and Find Full Text PDFAutophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α-Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease-causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2 ) is mislocalized in the cytosol.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) inactivation in chronic kidney disease (CKD) leads to energy status deterioration in the kidney, constituting the vicious cycle of CKD exacerbation. Unc-51-like kinase 1 (ULK1) is considered a downstream molecule of AMPK; however, it was recently reported that the activity of AMPK could be regulated by ULK1 conversely. We demonstrated that AMPK and ULK1 activities were decreased in the kidneys of CKD mice.
View Article and Find Full Text PDFInhibitory PAS domain protein (IPAS) is a bifunctional protein that acts as a transcriptional repressor in hypoxia and as a pro-apoptotic protein involved in neuronal cell death. Npas4 (NXF or LE-PAS) is a transcriptional factor that protects nerve cells from endogenous and foreign neurotoxins. Here we show that IPAS and Npas4 antagonize each other through their direct interaction.
View Article and Find Full Text PDFInactivation of constitutive autophagy results in the formation of cytoplasmic inclusions in neurones, but the relationship between impaired autophagy and Lewy bodies (LBs) remains unknown. α-Synuclein and p62, components of LBs, are the defining characteristic of Parkinson's disease (PD). Until now, we have analyzed mice models and demonstrated p62 aggregates derived from an autophagic defect might serve as 'seeds' and can potentially be a cause of LB formation.
View Article and Find Full Text PDFAlternative autophagy is an Atg5/Atg7-independent type of autophagy that contributes to various physiological events. We here identify Wipi3 as a molecule essential for alternative autophagy, but which plays minor roles in canonical autophagy. Wipi3 binds to Golgi membranes and is required for the generation of isolation membranes.
View Article and Find Full Text PDFVarious clinical and experimental findings have revealed the causal relationship between autophagy failure and oncogenesis, and several mechanisms have been suggested to explain this relationship. We recently proposed two additional mechanisms: centrosome number dysregulation and the failure of autophagic cell death. Here, we detail the mechanical relationship between autophagy failure and oncogenesis.
View Article and Find Full Text PDFAlternative autophagy is an ATG5 (autophagy related 5)-independent, Golgi membrane-derived form of macroautophagy. ULK1 (unc-51 like kinase 1) is an essential initiator not only for canonical autophagy but also for alternative autophagy. However, the mechanism as to how ULK1 differentially regulates both types of autophagy has remained unclear.
View Article and Find Full Text PDFAlternative autophagy is an autophagy-related protein 5 (Atg5)-independent type of macroautophagy. Unc51-like kinase 1 (Ulk1) is an essential initiator not only for Atg5-dependent canonical autophagy but also for alternative autophagy. However, the mechanism as to how Ulk1 differentially regulates both types of autophagy has remained unclear.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative disorder. Recent identification of genes linked to familial forms of PD has revealed that post-translational modifications, such as phosphorylation and ubiquitination of proteins, are key factors in disease pathogenesis. In PD, E3 ubiquitin ligase Parkin and the serine/threonine-protein kinase PTEN-induced kinase 1 (PINK1) mediate the mitophagy pathway for mitochondrial quality control via phosphorylation and ubiquitination of their substrates.
View Article and Find Full Text PDFMitochondria play a central role in the function of brown adipocytes (BAs). Although mitochondrial biogenesis, which is indispensable for thermogenesis, is regulated by coordination between nuclear DNA transcription and mitochondrial DNA transcription, the molecular mechanisms of mitochondrial development during BA differentiation are largely unknown. Here, we show the importance of the ER-resident sensor PKR-like ER kinase (PERK) in the mitochondrial thermogenesis of brown adipose tissue.
View Article and Find Full Text PDFAutophagy is an intracellular process that regulates the degradation of cytosolic proteins and organelles. Dying cells often accumulate autophagosomes. However, the mechanisms by which necroptotic stimulation induces autophagosomes are not defined.
View Article and Find Full Text PDFAutophagy is a cellular process that degrades intracellular components, including misfolded proteins and damaged organelles. Many neurodegenerative diseases are considered to progress via the accumulation of misfolded proteins and damaged organelles; therefore, autophagy functions in regulating disease severity. There are at least two types of autophagy (canonical autophagy and alternative autophagy), and canonical autophagy has been applied to therapeutic strategies against various types of neurodegenerative diseases.
View Article and Find Full Text PDFDirect cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2.
View Article and Find Full Text PDFAutophagy is an evolutionarily conserved process that degrades subcellular constituents. Mammalian cells undergo two types of autophagy; Atg5-dependent conventional autophagy and Atg5-independent alternative autophagy, and the molecules required for the latter type of autophagy are largely unknown. In this study, we analyzed the molecular mechanisms of genotoxic stress-induced alternative autophagy, and identified the essential role of p53 and damage-regulated autophagy modulator (Dram1).
View Article and Find Full Text PDFInhibitory PAS domain protein (IPAS) is a bifunctional protein that downregulates hypoxic gene expression and exerts proapoptotic activity by preventing prosurvival activity of Bcl-x and its related factors. Proapoptotic activity of IPAS is attenuated by the activation of the PINK1-Parkin pathway, and involved in neuronal degeneration in an experimental mouse model of Parkinson's disease. The current study shows that phosphorylation of IPAS at Ser184 by MAPK-activated protein kinase 2 (MK2 or MAPKAPK2) enhances the proapoptotic function of IPAS.
View Article and Find Full Text PDFThere has been a growing interest in mitophagy, mitochondria-selective autophagy, which plays an essential role in maintaining intracellular homeostasis. We have developed a small-molecule fluorescent probe, Mtphagy Dye, for visualizing mitophagy, which was readily synthesized from a known perylene derivative, perylene-3,4-dicarboxylic anhydride. Mtphagy Dye has suitable fluorescent properties for detecting mitochondrial acidification during mitophagy in the long-wavelength region that does not damage mitochondria.
View Article and Find Full Text PDFMitophagy is a mitochondrial quality control mechanism where damaged and surplus mitochondria are removed by autophagy. There are at least two different mammalian autophagy pathways: the Atg5-dependent conventional pathway and an Atg5-independent alternative pathway; the latter is involved in the erythrocyte mitophagy. In this chapter we describe the various experimental approaches to assess Atg5-indepedndent mitophagy in mammalian cells.
View Article and Find Full Text PDFCentrosome number is associated with the chromosome segregation and genomic stability. The ubiquitin-proteasome system is considered to be the main regulator of centrosome number. However, here we show that autophagy also regulates the number of centrosomes.
View Article and Find Full Text PDF