Publications by authors named "Satoru Nogami"

In clathrin-independent endocytosis, Hook1, a microtubule- and cargo-tethering protein, participates in sorting of cargo proteins such as CD98 (encoded by SLC3A2) and CD147 (encoded by BSG) into recycling endosomes. However, the molecular mechanism that regulates Hook1-mediated endosomal sorting is not fully understood. In the present study, we found that γ-taxilin is a novel regulator of Hook1-mediated endosomal sorting.

View Article and Find Full Text PDF

The cell wall integrity checkpoint monitors synthesis of cell wall materials during the cell cycle. Upon perturbation of cell wall synthesis, the cell wall integrity checkpoint is activated, downregulating Clb2 transcription. Here, we identified genes involved in this checkpoint by genetic screening of deletion mutants.

View Article and Find Full Text PDF

Never in mitosis A-related kinase 2A (Nek2A), a centrosomal serine/threonine kinase, is involved in mitotic progression by regulating the centrosome cycle. Particularly, Nek2A is necessary for dissolution of the intercentriole linkage between the duplicated centrosomes prior to mitosis. Nek2A activity roughly parallels its cell cycle-dependent expression levels, but the precise mechanism regulating its activity remains unclear.

View Article and Find Full Text PDF

Myogenesis is required for the development of skeletal muscle. Accumulating evidence indicates that the expression of several genes are upregulated during myogenesis and these genes play pivotal roles in myogenesis. However, the molecular mechanism underlying myogenesis is not fully understood.

View Article and Find Full Text PDF

A hyperspectral imaging camera was combined with a bright-field microscope to investigate the intracellular distribution of pigments in cells of the green microalga Haematococcus pluvialis, a synonym for H. lacustris (Chlorophyceae). We applied multivariate curve resolution to the hyperspectral image data to estimate the pigment contents in culture and revealed that the predicted values were consistent with actual measurements obtained from extracted pigments.

View Article and Find Full Text PDF

Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear.

View Article and Find Full Text PDF

α-Taxilin, a binding partner of the syntaxin family, is a candidate tumor marker. To gain insight into the physiological role of α-taxilin in normal tissues, we examined α-taxilin expression by Western blot and performed immunochemical analysis in the murine gastrointestinal tract where cell renewal vigorously occurs. α-Taxilin was expressed in the majority of the gastrointestinal tract and was prominently expressed in epithelial cells positive for Ki-67, a marker of actively proliferating cells.

View Article and Find Full Text PDF

The green microalga Haematococcus pluvialis accumulates the red pigment astaxanthin accompanied by morphological changes under stress conditions, including nutrient depletion, continuous light and high temperature. To investigate the physiological state of the algal cells, we developed the digital image-processing software called HaematoCalMorph. The software automatically outputs 25 single-cell measurements of cell morphology and pigments based on color, bright-field microscopic images.

View Article and Find Full Text PDF

Background: Most quantitative measures of phenotypic traits represent macroscopic contributions of large numbers of cells. Yet, cells of a tissue do not behave similarly, and molecular studies on several organisms have shown that regulations can be highly stochastic, sometimes generating diversified cellular phenotypes within tissues. Phenotypic noise, defined here as trait variability among isogenic cells of the same type and sharing a common environment, has therefore received a lot of attention.

View Article and Find Full Text PDF

Intracellular vesicle traffic plays an essential role in the establishment and maintenance of organelle identity and biosynthetic transport. We have identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. Recently, we have found that α-taxilin is over-expressed in malignant tissues including hepatocellular carcinoma and renal cell carcinoma.

View Article and Find Full Text PDF

To investigate the biological activity of a novel 24-membered macrolide compound, JBIR-19, isolated from the culture broth of the entomopathogenic fungus Metarhizium sp. fE61, morphological changes in yeast cells were examined using the automated image-processing program CalMorph. Principal components analysis was used to elucidate dynamic changes in the phenotypes, revealing two independent effects of JBIR-19 in yeast cells: bud elongation and increased size of the actin region.

View Article and Find Full Text PDF

Cellular and subcellular morphology reflects the physiological state of a cell. To determine the physiological nature of sake yeast with superior fermentation properties, we quantitatively analyzed the morphology of sake yeast cells by using the CalMorph system. All the sake strains examined here exhibited common morphological traits that are typically observed in the well-characterized whiskey (whi) mutants that show accelerated G(1)/S transition.

View Article and Find Full Text PDF

Variants of bottom-fermenting brewer's yeast that grew at high temperatures and showed poor proliferation and fermentation at low temperatures were isolated. Similar variants of laboratory yeast were also isolated and found to be incapable of mating. The KEX2 gene was cloned by complementation.

View Article and Find Full Text PDF

Background: Drug discovery and development are predicated on elucidation of the potential mechanisms of action and cellular targets of candidate chemical compounds. Recent advances in high-content imaging techniques allow simultaneous analysis of a range of cellular events. In this study, we propose a novel strategy to identify drug targets by combining genetic screening and high-content imaging in yeast.

View Article and Find Full Text PDF

The main filamentous structural component of the cell wall of the yeast Saccharomyces cerevisiae is 1,3-beta-glucan, which is synthesized by a plasma membrane-localized enzyme called 1,3-beta-glucan synthase (GS). Here we analyzed the quantitative cell morphology and biochemical properties of 10 different temperature-sensitive mutants of FKS1, a putative catalytic subunit of GS. To untangle their pleiotropic phenotypes, the mutants were classified into three functional groups.

View Article and Find Full Text PDF

The cell wall integrity checkpoint coordinates cell wall synthesis and mitosis in the budding yeast, Saccharomyces cerevisiae. It has been reported that this checkpoint arrests the cell cycle at G2/M phase with repression of the M phase cyclin Clb2p at the transcriptional level, under perturbation of cell wall synthesis. We demonstrate that an override of this checkpoint with accumulation of CLB2 mRNA is induced when negative CLB2 transcription factors are deleted or when positive CLB2 transcription factors are overproduced in cell wall-defective cells.

View Article and Find Full Text PDF

To obtain a comprehensive understanding of the budding phase transition, 4,711 Saccharomyces cerevisiae haploid nonessential gene deletion mutants were screened with the image processing program CalMorph, and 35 mutants with a round bud and 173 mutants with an elongated bud were statistically identified. We classified round and elongated bud mutants based on factors thought to affect the duration of the apical bud growth phase. Two round bud mutants (arc18 and sac6) were found to be defective in apical actin patch localization.

View Article and Find Full Text PDF

To quantitatively and multidimensionally assess the morphology of subcellular organelles and protein complexes in budding yeast cells, we applied our recently developed image-processing program, CalMorph. In this study, mitochondria, vacuole, endoplasmic reticulum, Golgi body, endosome, spindle pole body, and septin morphology were evaluated. In addition to the originally developed 501 parameters for cell wall morphology, nuclear DNA, and actin, we proposed an additional 610 parameters for the morphology of subcellular components, resulting in a total of 1111 quantitative parameters to evaluate the morphology of budding yeast.

View Article and Find Full Text PDF

Background: Yeast cell morphology was investigated to reveal the molecular mechanisms of cell morphogenesis and to identify key factors of other processes such as cell cycle progression. We recently developed a semi-automatic image processing program called CalMorph, which allows us to quantitatively analyze yeast cell morphology with the 501 parameters as biological traits and uncover statistical relationships between cell morphological phenotypes and genotypes. However, the current semi-automatic method is not suitable for morphological analysis of large-scale yeast mutants for the reliable prediction of gene functions because of its low-throughput especially at the manual image-acquiring process.

View Article and Find Full Text PDF

In the course of our screening program for active compounds that induce cell morphological changes of Saccharomyces cerevisiae, the culture broth of an entomopathogenic fungus Metarhizium sp. fE61 exhibited a unique morphological phenotype. We conducted an activity-guided isolation from the fermentation broth of Metarhizium sp.

View Article and Find Full Text PDF

Alpha-taxilin has been identified as a binding partner of syntaxin family members and thus has been proposed to function in syntaxin-mediated intracellular vesicle trafficking. However, the lack of detailed information concerning the cellular and subcellular localization of alpha-taxilin impedes an understanding of the role of this protein. In the present study, we characterized alpha-taxilin-expressing cells in the rat CNS with a specific antibody.

View Article and Find Full Text PDF

Rho1p is an essential small GTPase that plays a key role in the morphogenesis of Saccharomyces cerevisiae. We show here that the activation of Rho1p is regulated by a cyclin-dependent kinase (CDK). Rho1p is activated at the G1/S transition at the incipient-bud sites by the Cln2p (G1 cyclin) and Cdc28p (CDK) complex, in a process mediated by Tus1p, a guanine nucleotide exchange factor for Rho1p.

View Article and Find Full Text PDF

Yeast cell morphology can be treated as a quantitative trait using the image processing software CalMorph. In the present study, we investigated Ca(2+)-induced morphological changes in Ca(2+)-sensitive (cls) mutants of Saccharomyces cerevisiae, based on the discovery that the characteristic Ca(2+)-induced morphological changes in the Ca(2+)-sensitive mutant zds1 reflect changes in the Ca(2+) signaling-mediated cell cycle control pathway. By applying hierarchical cluster analysis to the quantitative morphological data of 58 cls mutants, 31 of these mutants were classified into seven classes based on morphological similarities.

View Article and Find Full Text PDF

Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness.

View Article and Find Full Text PDF

Maintaining specific cell size, which is important for many organisms, is achieved by coordinating cell growth and cell division. In the budding yeast Saccharomyces cerevisiae, the existence of two cell-size checkpoints is proposed: at the first checkpoint, cell size is monitored before budding at the G1/S transition, and at the second checkpoint, actin depolymerization occurring in the small bud is monitored before the G2/M transition. Morphological analyses have revealed that the small GTPase Rho1p participates in cell-size control at both the G1/S and the G2/M boundaries.

View Article and Find Full Text PDF