To understand the precise mechanism of the glycoside hydrolase (GH) family 127, a cysteine β-l-arabinofuranosidase (Arafase) - HypBA1 - has been isolated from Bifidobacterium longum in the human Gut microbiota, and the design and synthesis of the mechanism-based inhibitors such as l-Araf-haloacetamides have been carried out. The α-l-Araf-azide derivative was used as the monoglycosylamine equivalent to afford the l-Araf-chloroacetamides (α/β-1-Cl) as well as bromoacetamides (α/β-1-Br) in highly stereoselective manner through Staudinger reaction followed by amide formation with/without anomerization. Against HypBA1, the probes 1, especially in the case of α/β-1-Br inhibited the hydrolysis.
View Article and Find Full Text PDFβ-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches.
View Article and Find Full Text PDF