Publications by authors named "Satoru Machida"

HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated.

View Article and Find Full Text PDF

Cas12a is a programmable nuclease for adaptive immunity against invading nucleic acids in CRISPR-Cas systems. Here, we report the crystal structures of apo Cas12a from Lachnospiraceae bacterium MA2020 (Lb2) and the Lb2Cas12a+crRNA complex, as well as the cryo-EM structure and functional studies of the Lb2Cas12a+crRNA+DNA complex. We demonstrate that apo Lb2Cas12a assumes a unique, elongated conformation, whereas the Lb2Cas12a+crRNA binary complex exhibits a compact conformation that subsequently rearranges to a semi-open conformation in the Lb2Cas12a+crRNA+DNA ternary complex.

View Article and Find Full Text PDF

Dicer is a member of the ribonuclease III enzyme family and processes double-stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non-canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis.

View Article and Find Full Text PDF

Gox2253 from Gluconobacter oxydans belongs to the short-chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme.

View Article and Find Full Text PDF

Dawdle (DDL) is a microRNA processing protein essential for the development of Arabidopsis. DDL contains a putative nuclear localization signal at its amino-terminus and forkhead-associated (FHA) domain at the carboxyl-terminus. Here, we report the crystal structure of the FHA domain of Arabidopsis Dawdle, determined by multiple-wavelength anomalous dispersion method at 1.

View Article and Find Full Text PDF

In plant, primary transcripts (pri-miRNAs) transcribed from miRNA genes by RNA polymerase II are first processed into stem-loop pre-miRNAs and further chopped into ∼21 nt long miRNAs by RNase III-like enzyme DCL1. SERRATE (SE) protein is an essential component for miRNA processing by assisting DCL1 for accurate cleavage. Here we report the crystal structure of Arabidopsis SE core (residues 194-543) at 2.

View Article and Find Full Text PDF

The Agrobacterium Ti plasmid (T-DNA) 6b proteins interact with many different host proteins implicated in plant cell proliferation. Here, we show that Arabidopsis plants overexpressing 6b display microRNA (miRNA) deficiency by directly targeting SERRATE and AGO1 via a specific loop fragment (residues 40-55). In addition, we report the crystal structures of Agrobacterium tumefaciens AK6b at 2.

View Article and Find Full Text PDF

The Arabidopsis HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE to facilitate processing of primary miRNAs into microRNAs (miRNAs). However, the structural mechanisms of miRNA maturation by this complex are poorly understood. Here, we present the crystal structures of double-stranded RNA binding domains (dsRBD1 and dsRBD2) of HYL1 and HYL1 dsRBD1 (HR1)/dsRNA complex as well as human TRBP2 dsRBD2 (TR2)/dsRNA complex for comparison analysis.

View Article and Find Full Text PDF

Dicer or Dicer-like (DCL) protein is a catalytic component involved in microRNA (miRNA) or small interference RNA (siRNA) processing pathway, whose fragment structures have been partially solved. However, the structure and function of the unique DUF283 domain within dicer is largely unknown. Here we report the first structure of the DUF283 domain from the Arabidopsis thaliana DCL4.

View Article and Find Full Text PDF

Like many plant RNA viruses, infection by potato spindle tuber viroid (PSTVd) is known to lead to RNA silencing and a marked reduction in visible disease. To examine the relationship between RNA silencing and this recovery phenomenon in greater detail, we have carried out time-course analyses of viroid-specific small RNA accumulation using several viroid-host combinations. These analyses revealed the presence of two size classes of viroid-specific small RNAs in infected plants, and sequence analysis subsequently demonstrated the presence of a previously undescribed cluster of small RNAs derived primarily from negative-strand PSTVd RNA.

View Article and Find Full Text PDF