Publications by authors named "Satoru Kohgo"

Canine hemangiosarcoma (HSA) has an extremely poor prognosis, making it necessary to develop new systemic treatment methods. MicroRNA-214 (miR-214) is one of many microRNAs (miRNA) that can induce apoptosis in HSA cell lines. Synthetic miR-214 (miR-214/5AE), which showed higher cytotoxicity and greater nuclease resistance than mature miR-214, has been developed for clinical application.

View Article and Find Full Text PDF

Chronic hepatitis B virus (HBV) infection is a major public health problem that affects millions of people worldwide. Nucleoside analogue reverse transcriptase (RT) inhibitors, such as entecavir (ETV) and lamivudine (3TC), serve as crucial anti-HBV drugs. However, structural studies of HBV RT have been hampered due to its unexpectedly poor solubility.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection is a major worldwide health problem that requires the development of improved antiviral therapies. Here, a series of 4'-Azido-thymidine/4'-Azido-2'-deoxy-5-methylcytidine derivatives (, ) were synthesized, and their anti-HBV activities evaluated. Compounds were synthesized via an SAr reaction of , in which the 4-position of the thymine moiety was activated as the 2,4,6-triisopropylbenzenesulfonate.

View Article and Find Full Text PDF

We designed, synthesized, and characterized a novel nucleoside analog, (1,3,5)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-5-hydroxy-1-(hydroxymethyl)-2-methylene-cyclopentanecarbonitrile, or 4'-cyano-methylenecarbocyclic-2'-deoxyguanosine (CMCdG), and evaluated its anti-hepatitis B virus (anti-HBV) activity, safety, and related features. CMCdG's activity was determined using quantitative PCR and Southern blotting assays, and its cytotoxicity was determined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, while its activity and safety were determined in human liver-chimeric mice infected with wild-type HBV genotype Ce (HBV) and an entecavir (ETV)-resistant HBV variant containing the amino acid substitutions L180M, S202G, and M204V (HBV). CMCdG potently inhibited HBV production in HepG2.

View Article and Find Full Text PDF

Nucleoside analogue reverse transcriptase (RT) inhibitors (NRTIs) are major antiviral agents against hepatitis B virus (HBV) and human immunodeficiency virus type-1 (HIV-1). However, the notorious insoluble property of HBV RT has prevented atomic-resolution structural studies and rational anti-HBV drug design. Here, we created HIV-1 RT mutants containing HBV-mimicking sextuple or septuple amino acid substitutions at the nucleoside-binding site (N-site) and verified that these mutants retained the RT activity.

View Article and Find Full Text PDF

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 strains resistant to existing NRTIs. Here, we report that EFdA and NRTIs with a 4'-ethynyl- or 4'-cyano-moiety exerted activity against HIV-1 with an M184V mutation and multiple NRTI-resistant HIV-1s, whereas NRTIs with other moieties (e.

View Article and Find Full Text PDF

4'-cyano-2'-deoxyinosine (SK14-061a), a novel nucleoside analog based on inosine, has antiviral activity against the human immunodeficiency virus type 1 that has the ability to acquire resistance against many types of reverse transcriptase inhibitors based on nucleosides. The aim of this study was to investigate the pharmacokinetics studies after its oral administration to rats. For this purpose, we first developed and validated an analytical method for quantitatively determining SK14-061a levels in biological samples by a UPLC system interfaced with a TOF-MS system.

View Article and Find Full Text PDF

Objectives: 4'-cyano-2'-deoxyguanosine (CdG), a novel nucleoside analogue, has a high degree of antiviral activity against the chronic hepatitis B virus (HBV). The objective of this study was to develop an analytical method for quantitatively determining CdG levels in biological samples by liquid chromatography-mass spectrometry (LC/MS) and to investigate the pharmacokinetic properties of CdG in rats after intravenous and oral administration.

Methods: An analytical method using a UPLC system interfaced with a TOF-MS system was developed and validated.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) reverse transcriptase (RT) is essential for viral replication and is an important drug target. Nonetheless, the notorious insolubility of HBV RT has hindered experimental structural studies and structure-based drug design. Here, we demonstrate that a Q151M substitution alone at the nucleotide-binding site (N-site) of human immunodeficiency virus type-1 (HIV-1) RT renders HIV-1 highly sensitive to entecavir (ETV), a potent nucleoside analogue RT inhibitor (NRTI) against HBV.

View Article and Find Full Text PDF

Synthesis of a novel 2'-deoxy-guanine carbocyclic nucleoside 4 constructed with spiro[2.4]heptane core structure in the aglycon moiety was carried out. Radical-mediated 5-exo-dig mode cyclization and following cyclopropanation proceeded efficiently to furnish the spiro alcohol 10.

View Article and Find Full Text PDF

A method for the diastereoselective synthesis of 6″-(Z)- and 6″-(E)-fluorinated analogues of the anti-HBV agent entecavir has been developed. Construction of the methylenecyclopentane skeleton of the target molecules has been accomplished by radical-mediated 5-exo-dig cyclization of the selenides 6 and 15 having the phenylsulfanylethynyl structure as a radical accepting moiety. In the radical reaction of the TBS-protected precursor 6, (Z)-anti-12 was formed as a major product.

View Article and Find Full Text PDF

Exomethylene acycloguanine nucleosides 4, 6 and its monophosphate derivatives 5, 7, and 8 have been synthesized. Mitsunobu-type coupling of 2-N-acetyl-6-O-diphenylcarbamoylguanine (11) with primary alcohols proceeded regioselectively to furnish the desired N(9)-substituted products in moderate yield. Evaluation of 4-8 for anti-HBV activity in HepG2 cells revealed that the phosphonate derivative 8 was found to exhibit moderated activity (EC50 value of 0.

View Article and Find Full Text PDF

Unlabelled: Certain nucleoside/nucleotide reverse transcriptase (RT) inhibitors (NRTIs) are effective against human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV). However, both viruses often acquire NRTI resistance, making it crucial to develop more-potent agents that offer profound viral suppression. Here, we report that 4'-C-cyano-2-amino-2'-deoxyadenosine (CAdA) is a novel, highly potent inhibitor of both HBV (half maximal inhibitory concentration [IC50 ] = 0.

View Article and Find Full Text PDF

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a recently discovered nucleoside reverse transcriptase inhibitor, exhibits activity against a wide spectrum of wild-type and multidrug-resistant clinical human immunodeficiency virus type 1 (HIV-1) isolates (50% effective concentration, 0.0001 to 0.001 microM).

View Article and Find Full Text PDF

One of the formidable challenges in therapy of infections by human immunodeficiency virus (HIV) is the emergence of drug-resistant variants that attenuate the efficacy of highly active antiretroviral therapy (HAART). We have recently introduced 4'-ethynyl-nucleoside analogs as nucleoside reverse transcriptase inhibitors (NRTIs) that could be developed as therapeutics for treatment of HIV infections. In this study, we present 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine (EFdA), a second generation 4'-ethynyl inhibitor that exerted highly potent activity against wild-type HIV-1 (EC50 approximately 0.

View Article and Find Full Text PDF

Working hypotheses to solve the critical problems of the existing highly active anti-retroviral therapy were proposed. The study based on the hypotheses proved the validity of the hypotheses and resulted in the development of 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, with highly potent activity against all HIV-1, very favorable toxic profiles, and stability in plasma. The nucleoside will prevent or delay the emergence of drug-resistant HIV-1 variants and be an ideal therapeutic agent for both HIV-1 and HBV infections.

View Article and Find Full Text PDF

We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 microM [(3)H]EFdA or [(3)H]3'-azido-2',3'-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.

View Article and Find Full Text PDF

A working hypothesis to solve the critical problems of existing HAART was proposed. The study based on the hypothesis proved the validity of the hypothesis and resulted in the development of 2'-deoxy-4'-C-ethynyl-2-fluoro-adenosine (4'Ed2FA), a nucleoside reverse transcriptase inhibitor (NRTI) with highly potent activity against all HIV-1 strains, very favourable toxic profiles, and stability in plasma.

View Article and Find Full Text PDF

Extensive efforts have been made to identify nucleoside reverse transcriptase inhibitors (NRTIs). Eight NRTIs have now been approved for clinical use; however, variants of HIV-1 resistant to these antiviral agents have emerged in patients even when they are treated with combinations [highly active antiretroviral therapy (HAART)]. Thus, the development of novel compounds that are active against drug-resistant HIV-1 variants and that prevent or delay the emergence of resistant HIV-1 variants is urgently needed.

View Article and Find Full Text PDF

We investigated the potential of 4'-C-substituted nucleosides for the treatment of HIV-1 and HBV. Of the nucleosides we prepared, several 4'-C-ethynyl-2'-deoxypurine nucleosides showed the most potent anti-HIV activity. However, two candidates, 4'-C-ethynyl-2'-deoxyguanosine and 9-(2-deoxy-4-C-ethynyl-beta-D-ribo-pentofuranosyl)-2,6-diaminopurine, were very toxic during in vivo study.

View Article and Find Full Text PDF

Some 4'-C-ethynyl-2'-deoxy purine nucleosides showed the most potent anti-HIV activity among the series of 4'-C-substituted 2'-deoxynucleosides whose 4'-C-substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C-4' position they have, the more acceptable biological activity they show. Thus, 4'-C-cyano-2'-deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity.

View Article and Find Full Text PDF

Purine 2'-deoxynucleosides bearing an ethynyl or a cyano group at C-4' of the sugar moiety were synthesized from the corresponding 2'-deoxynucleosides. These compounds exhibited very potent anti-HIV activity, and remained active against drug resistant HIV strains.

View Article and Find Full Text PDF