Publications by authors named "Satoko Hashimoto"

The sleep-wake cycle of human subjects was artificially split into two episodes by imposing an 8-h light and 4-h dark cycle (LD 8:4) twice a day for 7 days, which was followed by a 3-day free-running session. Sleep was permitted only in the dark period. The subjects in the ordinary group were exposed to ordinary light (ca.

View Article and Find Full Text PDF

Circadian rhythms and sleep-wake cycles were measured in volunteers staying singly in temporal isolation unit where they were exposed to artificial short and long light-dark (LD) cycles for 7 days. The long day consisted of 16-h light and 8-h dark (LD 16:8) and the short day consisted of 8-h light and 16-h dark (LD 8:16). During the light period, bright light of approximately 5,000 lux was given from the ceiling and during the dark period there was no illumination.

View Article and Find Full Text PDF

Effects of a fixed single meal per day were examined on the circadian pacemaker and sleep-wake cycle in subjects under temporal isolation. When the time of single meal was allowed to take at any time of day (ad-lib meal), the sleep-wake cycle as well as the circadian rhythms in plasma melatonin, cortisol, and core body temperature were significantly phase-delayed in 8 days. On the other hand, when the time of meal was fixed at 1800 h in local time (RF meal), the phase-shift of sleep-wake cycle was not significant while those of the circadian rhythms were significant.

View Article and Find Full Text PDF

Effects of daily physical exercise in the morning or in the evening were examined on circadian rhythms in plasma melatonin and core body temperature of healthy young males who stayed in an experimental facility for 7 days under dim light conditions (<10 lux). Sleep polysomnogram (PSG) and heart rate variability (HRV) were also measured. Subjects performed 2-h intermittent physical exercise with a bicycle ergometer at ZT3 or at ZT10 for four consecutive days, where zeitgeber time 0 (ZT0) was the time of wake-up.

View Article and Find Full Text PDF

Our previous study demonstrated that physical exercise under dim lights (<10 lux) accelerated reentrainment of the sleep-wake cycle but not the circadian melatonin rhythm to an 8-h phase-advanced sleep schedule, indicating differential effects of physical exercise on the human circadian system. The present study examined the effects of bright light (>5,000 lux) on exercise-induced acceleration of reentrainment because timed bright lights are known to reset the circadian pacemaker. Fifteen male subjects spent 12 days in temporal isolation.

View Article and Find Full Text PDF

Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues.

View Article and Find Full Text PDF

Unique effects of sham-pinealectomy [intracranial surgery (IS)] which include reduced functional activity of the adrenal gland and suppressed circadian rhythms of the adrenal medulla, and which are reversed by pinealectomy, have been reported in rodents. To clarify the mechanisms, we investigated whether or what changes occur in pineal functional activity after IS. Sixty-six male rats of normal and IS groups were used at 50 days of age.

View Article and Find Full Text PDF

Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed.

View Article and Find Full Text PDF

In transmeridian flights, photic and nonphotic entrainment mechanisms are expected to interact dynamically in the human circadian system. In order to simulate the reentrainment process of the circadian rhythms, the photic entrainment mechanism was introduced to our previous model, which consisted of three coupled oscillators. Regardless of flight direction, a large time difference beyond 10 h tended to induce the antidromic reentrainment.

View Article and Find Full Text PDF

Entrainment of the circadian rhythm has 2 aspects, period and phase adjustments, which are established simultaneously in most nonhuman circadian systems. The human circadian system is unique in its functional structure in which 2 different subsystems are involved; one is the circadian pacemaker analogous to that located in the suprachiasmatic nucleus, and the other is the oscillatory system of unknown nature that drives the rest-activity cycle. The human circadian system shows the endogenous period very close to 24 h under entrainment and less sensitive to photic stimuli than under free running, which may explain stable entrainment in the real word where natural sun lights are unpredictable in terms of the intensity and time of appearance.

View Article and Find Full Text PDF

Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them.

View Article and Find Full Text PDF