Publications by authors named "Satishchandran C"

Background: RNA interference (RNAi) provides an attractive tool to modulate biological systems, and ultimately, to treat human diseases. We describe early results from a Phase Ib, first-in-human safety and tolerability study of an RNAi-based therapy, NUC B1000, among patients with mild to moderate chronic HBV.

Methods: Three subjects received a single 5 mg DNA dose of NUC B1000 as part of a planned dose escalation study.

View Article and Find Full Text PDF

A series of transcriptional activator (TAT)-protein transduction domains (PTDs) modified with hydrophobic amino acids were used as model cationic amphiphilic peptides to study the effect of hydrophobicity on interaction of such peptides with plasmid DNA. The peptide-DNA complexes were analyzed by dynamic light scattering and gel electrophoresis to determine their size and electrokinetic properties at various +/- charge ratios. Peptides in solution were found to have a tendency to aggregate and the hydrodynamic size of the aggregates depends on the structure of peptide.

View Article and Find Full Text PDF

A spectrophotometric method for quantification of linear DNA is described. The assay measures ADP produced following digestion of linear DNA by an ATP-dependent deoxyribonuclease. Cleavage of the phosphodiester bond of the DNA substrate is proportional to ADP formed in the reaction which follows typical Michaelis-Menten kinetics (K(m) of 0.

View Article and Find Full Text PDF

DNA vaccines are typically comprised of plasmid DNA molecules that encode an antigen(s) derived from a pathogen or tumor cell. Following introduction into a vaccine, cells take up the DNA, where expression and immune presentation of the encoded antigen(s) takes place. DNA can be introduced by viral or bacterial vectors or through uptake of 'naked' or complexed DNA.

View Article and Find Full Text PDF

Chemokines are inflammatory molecules that act primarily as chemoattractants and as activators of leukocytes. Their role in antigen-specific immune responses is of importance, but their role in disease protection is unknown. Recently it has been suggested that chemokines modulate immunity along more classical Th1 and Th2 phenotypes.

View Article and Find Full Text PDF

Bupivacaine, a local anesthetic and cationic amphiphile, forms stable liposomal-like structures upon direct mixing with plasmid DNA in aqueous solutions. These structures are on the order of 50-70 nm as determined by scanning electron microscopy, and are homogeneous populations as analyzed by density gradient centrifugation. The DNA within these structures is protected from nuclease degradation and UV-induced damage in vitro.

View Article and Find Full Text PDF

Adhesion molecules are important for cell trafficking and delivery of secondary signals for stimulation of T cells and antigen-presenting cells (APCs) in a variety of immune and inflammatory responses. Adhesion molecules lymphocyte function-associated antigen (LFA)-1 and CD2 on T cells recognize intercellular adhesion molecule (ICAM)-1 and LFA-3 on APCs, respectively. Recent studies have suggested that these molecules might play a regulatory role in antigen-specific immune responses.

View Article and Find Full Text PDF

Adenosine-5'-phosphosulfate kinase (APS kinase) catalyzes the formation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the major form of activated sulfate in biological systems. The enzyme from Escherichia coli has complex kinetic behavior, including substrate inhibition by APS and formation of a phosphorylated enzyme (E-P) as a reaction intermediate. The presence of a phosphorylated enzyme potentially enables the steady-state kinetic mechanism to change from sequential to ping-pong as the APS concentration decreases.

View Article and Find Full Text PDF

A novel DNA assembly method, chain reaction cloning (CRC), is described. CRC enables the ordered assembly of multiple DNA fragments in a single step. The power of the technique was demonstrated by the directed in vitro assembly of a plasmid comprised of six DNA fragments from a pool of 12 available fragments.

View Article and Find Full Text PDF

DNA or genetic vaccines are currently being evaluated for safety and efficacy in human clinical trials in the areas of infectious disease and cancer. Since DNA vaccines induce antibodies and cytotoxic T lymphocytes (CTLs), they are currently being evaluated in humans for both prevention and therapy of HSV-2, HIV-1, and HBV infections, for prevention of influenza and malaria, and therapy of cutaneous T-cell lymphoma (CTCL) and colorectal cancer.

View Article and Find Full Text PDF

A DNA vaccine encoding glycoprotein D (gD) of herpes simplex virus type 2 (pHSV-gD2) was injected via parenteral and mucosal routes to determine the optimal route of delivery for immune stimulation. Generation of distal mucosal immunity following parenteral vaccination was also evaluated. While all routes of DNA vaccine administration resulted in systemic cellular and humoral responses, the intra-muscular (i.

View Article and Find Full Text PDF

The gentamicin-resistance operon of Pseudomonas aeruginosa (aac) contains two cistrons for which only the second gene product has an identified function. The 813bp second cistron (ORF2) encodes a protein that confers gentamicin resistance by catalysis of the transfer of an acetyl group from acetyl Coenzyme A to gentamicin. The first open reading frame (ORF1) encodes a 23.

View Article and Find Full Text PDF

The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase). In Escherichia coli and Salmonella typhimurium numerous studies have located a structural gene (metK) for this enzyme at 63 min on the chromosomal map. We have now identified a second structural gene for S-adenosylmethionine synthetase in E.

View Article and Find Full Text PDF

Adenosine 5'-phosphosulfate (APS) kinase (ATP:APS 3'-phosphotransferase) catalyzes the ultimate step in the biosynthesis of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the primary biological sulfuryl donor. APS kinase from Escherichia coli is phosphorylated upon incubation with ATP, yielding a protein that can complete the overall reaction through phosphorylation of APS. Rapid-quench kinetic experiments show that, in the absence of APS, ATP phosphorylates the enzyme with a rate constant of 46 s-1, which is equivalent to the Vmax for the overall APS kinase reaction.

View Article and Find Full Text PDF

S-Adenosylmethionine (AdoMet) plays a myriad of roles in cellular metabolism. One of the many roles of AdoMet in Escherichia coli and Salmonella typhimurium is as a corepressor of genes encoding enzymes of methionine biosynthesis. To investigate the metabolic effects of large reductions in intracellular AdoMet concentrations in growing cells, we constructed and examined mutants of E.

View Article and Find Full Text PDF

Adenosine-5'-phosphosulfate kinase (ATP:adenylylsulfate 3'-phosphotransferase), the second enzyme in the pathway of sulfate activation, has been purified (approximately 300-fold) to homogeneity from an Escherichia coli K12 strain, which overproduces the enzyme activity (approximately 100-fold). The purified enzyme has a specific activity of 153 mumol of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) formed/min/mg of protein at 25 degrees C. The enzyme is remarkably efficient with a Vmax/Km(APS) of greater than 10(8) M-1 s-1, indicating that at physiologically low substrate concentrations the reaction is essentially diffusion limited.

View Article and Find Full Text PDF

S-Adenosylmethionine synthetase from Escherichia coli is rapidly inactivated by N-ethylmaleimide. In the presence of excess N-ethylmaleimide inactivation follows pseudo first-order kinetics, and loss of enzyme activity correlates with the incorporation of 2 eq of N-[ethyl-2-3H]maleimide/subunit. Preincubation of the enzyme with methionine and the ATP analog adenylylimidodiphosphate reduced the rate of N-ethylmaleimide incorporation more than 30-fold.

View Article and Find Full Text PDF

The speC gene encoding ornithine decarboxylase (ODC) in Escherichia coli is negatively regulated by cAMP and the cAMP receptor protein (CRP). In minicells transformed with the plasmid pODC bearing speC, cAMP supplementation repressed ODC synthesis. In a cell-free protein synthesizing system directed by pODC, cAMP at 10(-5) M repressed ODC synthesis by 90%.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnn155qsae7e5bctibie53kjeiub5tl9s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once