Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs).
View Article and Find Full Text PDFIn peripheral blood, cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA), which indicates molecular abnormalities in metastatic breast tumor tissue. The sequencing of cfDNA of Metastatic Breast Cancer (MBC) patients allows assessment of therapy response and noninvasive treatment. In the proposed study, clinically significant alterations in PIK3CA and TP53 genes associated with MBC resulting in a missense substitution of His1047Arg and Arg282Trp from an next-generation sequencing-based multi-gene panel were reported in a cfDNA of a patient with MBC.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
August 2022
The premature chromosome condensation (PCC) assay is considered as complementary bio-dosimetry tool for chromosome aberration assay and the PCC assay can be used to estimate high dose exposure. Though the PCC ring is considered as prospective biomarker, chromosome length ratio (ratio of longest and shortest chromosome length in PCC spreads) of chemically induced PCC is shown to be very good indicator of ionizing radiation. In view of this, an in-vitro study has been performed using PCC assay to suggest chromosome length ratio (LR) as potential bio-dosimeter induced by high dose ionizing radiation.
View Article and Find Full Text PDF