A thermal O-to-C [1,3]-rearrangement of α-hydroxy acid derived enol ethers was achieved under mild conditions. The 2-aminothiophenol protection of carboxylic acids facilitates formation of the [1,3] precursor and its thermal rearrangement via stabilization of a radical intermediate. Experimental and theoretical evidence for dissociative radical pair formation, its captodative stability via aminothiophenol, and a unique solvent effect are presented.
View Article and Find Full Text PDFInsertion or coordination copolymerization of ethylene with di-substituted olefins is challenging and the choice of di-substituted mono-functional olefin versus di-substituted di-functional olefin (DDO) appears to be decisive. Here we show that DDO-inserted species are amenable to ethylene insertion and polymerization. DDOs such as 2-acetamidoacrylic acid (AAA), methyl 2-acetamidoacrylate (MAAA), and ethyl 2-cyanoacrylate (ECA) were treated with palladium complex [{P∧O}PdMe(L)] (P∧O=κ -P,O-Ar PC H SO O with Ar=2-MeOC H ; L=C H OS) and the existence of respective insertion intermediates in moderate yield (up to 37 %) was established.
View Article and Find Full Text PDFDesigning co-catalyst-free late transition metal complexes for ethylene polymerization is a challenging task at the interface of organometallic and polymer chemistry. Herein, a set of new, co-catalyst-free, single-component catalytic systems for ethylene polymerization have been unraveled. Treatment of anthranilic acid with various aldehydes produced four iminocarboxylate ligands (L1-L4) in very good to excellent yield (75-92 %).
View Article and Find Full Text PDF