Publications by authors named "Satish Kumar Sanwal"

Increasing soil and underground water salinization with decreasing availability of fresh water has become a potential threat to sustainable crop production in arid and semi-arid areas globally. Introduction and evaluation of salt-tolerant halophytic crops is one of the sustainable ways to preserve productivity in saline ecosystems. This study was aimed to screen quinoa germplasms under high-sodium adsorption ratio (SAR) saline stress.

View Article and Find Full Text PDF

Production of many crops, including onion, under salinity is lagging due to limited information on the physiological, biochemical and molecular mechanisms of salt stress tolerance in plants. Hence, the present study was conducted to identify salt-tolerant onion genotypes based on physiological and biochemical mechanisms associated with their differential responses. Thirty-six accessions were evaluated under control and salt stress conditions, and based on growth and bulb yield.

View Article and Find Full Text PDF

The effect of saline irrigation (EC 6 dS m and 9 dS m) on the roots of L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes.

View Article and Find Full Text PDF

Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how two lentil cultivars, PDL-1 (tolerant) and L-4076 (sensitive), respond to alkaline soil conditions, finding that PDL-1 shows better growth and less salt injury.
  • - Key findings reveal that PDL-1 has a higher accumulation of potassium, better mitotic index, and enhanced levels of antioxidants and osmolytes, contributing to its alkalinity tolerance.
  • - The research identifies significant genes linked to abscisic acid signaling and secondary metabolite synthesis in PDL-1, suggesting these pathways are crucial for improving lentil crop resilience against alkalinity stress in breeding programs.
View Article and Find Full Text PDF

Extensive transcriptomic skimming was conducted to decipher molecular, morphological, physiological, and biochemical responses in salt-tolerant (PDL-1) and salt-sensitive (L-4076) cultivars under control (0 mM NaCl) and salinity stress (120 mM NaCl) conditions at seedling stage. Morphological, physiological, and biochemical studies revealed that PDL-1 exhibited no salt injury and had higher K/Na ratio, relative water content (RWC), chlorophyll, glycine betaine, and soluble sugars in leaves while lower HO induced fluorescence signals in roots as compared to L-4076. Transcriptomic profile revealed a total of 17,433 significant differentially expressed genes (DEGs) under different treatments and cultivar combinations that include 2557 upregulated and 1533 downregulated transcripts between contrasting cultivars under salt stress.

View Article and Find Full Text PDF

Globally, chickpea production is severely affected by salinity stress. Understanding the genetic basis for salinity tolerance is important to develop salinity tolerant chickpeas. A recombinant inbred line (RIL) population developed using parental lines ICCV 10 (salt-tolerant) and DCP 92-3 (salt-sensitive) was screened under field conditions to collect information on agronomy, yield components, and stress tolerance indices.

View Article and Find Full Text PDF

In this study, 285 lentil genotypes were phenotyped under hydroponic and alkaline field conditions. Significant genotypic variation for alkalinity stress was observed among the six Lens species screened hydroponically and in the field having pH up to 9.1.

View Article and Find Full Text PDF