Publications by authors named "Satish Kumar Panda"

Purpose: To study the associations between optic nerve head (ONH) strains under intraocular pressure (IOP) elevation with retinal sensitivity in patients with glaucoma.

Design: Clinic-based cross-sectional study.

Participants: Two hundred twenty-nine patients with primary open-angle glaucoma (subdivided into 115 patients with high-tension glaucoma [HTG] and 114 patients with normal-tension glaucoma [NTG]).

View Article and Find Full Text PDF

Recently proposed deep learning (DL) algorithms for the segmentation of optical coherence tomography (OCT) images to quantify the morphological changes to the optic nerve head (ONH) tissues during glaucoma have limited clinical adoption due to their device specific nature and the difficulty in preparing manual segmentations (training data). We propose a DL-based 3D segmentation framework that is easily translatable across OCT devices in a label-free manner (i.e.

View Article and Find Full Text PDF

Gastrointestinal (GI) diseases are often associated with hypertrophy of the layers of the GI wall, along with dilatation and a denervation of smooth muscle cells which alters the biomechanical properties of the tissue. 'Balloon distension' is a specialised experimental protocol performed on hollow organs to investigate their biomechanical properties. A balloon is inserted and pressurized during this procedure and the change in external diameter is monitored as a function of the applied pressure.

View Article and Find Full Text PDF

Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid) or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable to properly capture the materials characteristics because hyperelastic models are unsuited for time-dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite strain viscoelastic tissue responses.

View Article and Find Full Text PDF